Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How Small is Too Small? NC State Researchers Find that Polarization Changes at the Nanoscale

Abstract:
How small is too small to be useful? Researchers at North Carolina State University have done nanoscale analysis on ferroelectric thin films - materials that are used in electronic devices from computer memories to iPhones and polarize when exposed to an electric charge - and found that when it comes to polarization, both size and location matter.

How Small is Too Small? NC State Researchers Find that Polarization Changes at the Nanoscale

RALEIGH, NC | Posted on September 8th, 2008

The finding suggests that, in creating tiny electrical devices, the use of extremely small components comes with the possibility of decreased effectiveness.

Ferroelectric thin films are like sandwiches - layers of material held between two metals. When a charge is applied to the material in the sandwich, it polarizes, taking on a uniformly positive or negative charge. Researchers have theorized that when ferroelectric thin films are miniaturized, at a certain size the material loses its ability to polarize.

NC State's Dr. Marco Buongiorno-Nardelli, associate professor of physics, and Dr. Matías Nuñez, post-doctoral researcher in physics, found that this is not exactly the case: The atoms in the ferroelectric thin film still polarize, even on the nanoscale, but they don't do so in a uniform way, as they do at a larger scale. Instead, the polarization is disorganized with some atoms taking on a positive and others a negative charge, changing the overall properties of the material and allowing for residual polarization to exist.

Their results were published online in the journal Physical Review Letters.

Buongiorno-Nardelli and Nuñez used computer modeling to examine how individual atoms within the thin film interacted with one another, and focused specifically on the distribution of the electrons within the atoms, since electron distribution determines whether the ferroelectric will polarize with a positive or negative charge. They discovered that at a thickness of around 20 to 30 nanometers (a nanometer is one billionth of a meter - for scale, a human hair is 100,000 nanometers wide), disorganization appears in the material.

"When you get to the nanoscale, you have individual atoms interacting with one another instead of groups of atoms," Buongiorno-Nardelli says. "At that point, it is no longer the property of the material itself - the ferroelectric - that counts, because the property of the interface, where the atoms bond, becomes dominant."

Note to editors: An abstract of the paper follows

"Onset of Ferrielectricity and the Hidden Nature of Nanoscale Polarization in Ferroelectric Thin Films"

Published: Online in Physical Review Letters
Authors: Matías Nuñez and Marco Buongiorno-Nardelli, NC State University
Abstract: Using calculations from first principles and the concept of layer polarization we have elucidated the nanoscale organization and local polarization in ferroelectric thin films between metallic contacts. The profile of the local polarization for different film thicknesses unveils a peculiar spatial pattern of atomic layers with uncompensated dipoles in what was originally thought to be a ferroelectric domain. This effectively ferrielectric behavior is induced by the dominant roles of the interfaces at such reduced dimensionality and can be interpreted using a simple classical model where the latter are explicitly taken into account.

####

For more information, please click here

Contacts:
Tracey Peake
News Services
(919) 515-6142

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Thin films

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project