Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Broad Institute awarded grant to develop chemical probes for human biology and disease

Image courtesy of Len Rubenstein
Image courtesy of Len Rubenstein

Abstract:
Nearly $90M grant from the National Institutes of Health will support novel research at the interface of genomics and chemical biology to benefit entire research community

Broad Institute awarded grant to develop chemical probes for human biology and disease

Cambridge, MA | Posted on September 2nd, 2008

Researchers at the Broad Institute of Harvard and MIT today announced that they have been chosen to receive a six-year, ~$86M grant from the National Institutes of Health (NIH) to identify and develop molecular tools known as "small molecules", which can probe the proteins, signaling pathways and cellular processes that are crucial to human health and disease. The Broad Institute is among nine institutions to receive funding under the Molecular Libraries and Imaging Initiative, one of the NIH Roadmap Initiatives for Medical Research. These institutions together comprise a collaborative research network that will conduct high-throughput biological studies and chemical optimization of a diverse collection of small molecules, and openly share their data with the scientific community, yielding knowledge that may bolster the search for novel disease therapies.

"Small-molecule probe and drug discovery enables basic research to impact on human health, and the advances of chemical biology are transforming this discovery process," said principal investigator Stuart Schreiber, director of the Chemical Biology Program at the Broad Institute. "Integrating chemical biology with genome biology, which is a founding principle of the Broad Institute, accelerates the march to new medicines in a magical way."

The molecules of life come in a variety of shapes and sizes. At one end of the spectrum are large macromolecules such as DNA, RNA, and proteins. At the other end are a plethora of chemical compounds that exert effects on human biology by virtue of their relatively small size and their ability to interact directly with biological macromolecules. These so-called small molecules are readily transported through the body and include endogenous substances, such as hormones and neurotransmitters, as well as medicines like aspirin and penicillin.

The six-year NIH grant designates the Broad Institute as one of four Comprehensive Screening Centers in the Molecular Libraries Probe Production Centers Network (MLPCN), where vast collections or "libraries" of small molecules will be screened using high-throughput methods to identify compounds with interesting biological functions.

The NIH award reflects a new chapter in an already rich history of chemical biology and small-molecule screening at the Broad Institute, one that first began at the Harvard Institute of Chemistry and Chemical Biology (ICCB) in 1997. The ICCB, which became a founding asset of the Broad Institute when it was launched in 2003, created the first large-scale, public, small-molecule screening center and served as a model for future initiatives. "At the Broad, we are truly fortunate to have a group of individuals with world-class expertise in nearly all facets of professional, high-throughput, small-molecule science," said Schreiber. "Indeed, we couldn't undertake this work without them."

The development of small molecule probes is an intensive effort that involves more than high-throughput screening of molecular libraries. Before screens can be carried out, months of meticulous work are needed to lay the necessary scientific groundwork. Will chemicals be tested in test tubes or cells? How will the biological effects of small molecules be measured? At the Broad Institute, many of these questions can be addressed by leveraging the power of large-scale approaches such as global gene expression-based screening and high-content cellular imaging.

Once the preliminary work is complete and a screen begins, Broad researchers ensure that all of the data are captured digitally and deposited in public databases. The ICCB and the Broad Institute pioneered this type of public data sharing through their creation of ChemBank, and more recently researchers at the Broad have been contributing to a second public database, PubChem, which is associated with the Molecular Libraries and Imaging Initiative. Follow-up work, including further biological testing and small-molecule optimization, is then required to develop promising small molecules into bona fide molecular probes of human biology. This requires modern organic synthesis, a scientific endeavor that is an underpinning of the Broad Institute.

"The Molecular Libraries Program has cultivated an extremely high-quality collection of small molecules that are wonderfully complementary to the unique collection established at the Broad Institute," said Schreiber. "We are eager to begin exploring the biomedical potential of these chemical compounds, in addition to our own, and to share our results with the global scientific community."


####

About Broad Institute of Harvard and MIT
The Broad Institute of Harvard and MIT was founded in 2003 to bring the power of genome-based knowledge to medicine. It pursues this mission by empowering creative scientists to construct new and robust tools for genomic medicine, to apply them to the understanding and treatment of disease, and to make them freely accessible to the global scientific community.

The Institute’s scientific community is comprised of faculty, professional staff, and students from throughout the MIT and Harvard, and is jointly governed by the two universities.

Organized around scientific programs and platforms, the unique structure of the Broad Institute enables scientists to collaborate on transformative projects across many scientific and medical disciplines.

For more information, please click here

Contacts:
7 Cambridge Center
Cambridge, MA 02142
Ph: 617.452.3000
Fax: 617.452.4588

320 Charles Street
Cambridge, MA 02141-2023
Ph: 617.258.0900
Fax: 617.258.0901

Copyright © Broad Institute of Harvard and MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project