Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Dolomite Maintain the Lead in Microfluidics with the Mitos Circular Connector

Abstract:
The Mitos microfluidic circular connector offers fast, easy connection of up to eight high-pressure microfluidic channels.

Dolomite Maintain the Lead in Microfluidics with the Mitos Circular Connector

UK | Posted on September 1st, 2008

Royston based microfluidics experts, Dolomite, have announced the release of a new generation of microfluidic connectors that will enable chemists and scientists to more easily benefit from advances in microfluidic technology.

As part of the Mitos range of standard products that includes microfluidic chips, connectors and pumps, the Mitos circular connector will enable the fast and easy integration of microfluidic devices into new and existing systems.

Dolomite is a world leader in Microfluidics, a technology also known as ‘lab on a chip'. This is an exciting new field of science and engineering that enables very small-scale fluid control and analysis, allowing instrument manufacturers to develop smaller, more cost-effective and more powerful systems. With lab-on-a-chip technology, entire complex chemical management and analysis systems are created in a microfluidic chip and interfaced with, for example, the Mitos circular connector.

"The demand for a new generation of connectors is very high," said Tim Landucci, Marketing Manager at Dolomite. "As the many benefits of microfluidic technology are becoming more widely understood and as microfluidic chips are becoming more complex, being able to get the fluids into and out of such small scale devices is becoming ‘the' major design issue. At Dolomite we are working with many companies around the world on a number of projects and we are finding that connector design and production is now an important part of what we do, alongside the actual chip design and manufacture."

The new Mitos connector enables the connection of eight, high-pressure fluid channels, and has been designed to ensure a fast, reliable connection to the surface of microfluidic chips. Manufactured in PTFE and perfluoroelastomer, the connector is chemically resistant and its design enables it to be located anywhere on a microfluidic chip, offering maximum versatility. It also has the ability to handle high pressure, up to 20 Bar.

"I think its size is quite amazing," said Tim Landucci. "The connections are very close together, roughly 3mm apart. This makes it a very compact solution. There is not another connector on the market like this. Similar connectors are bigger and use other less versatile techniques, such as sealing the tubes to the chip with adhesive. The connector is a big achievement for our design team and we are confident that it will be widely adopted by the microfluidics community."

####

About Dolomite
Dolomite is a world leader in microfluidic applications. We work with instrument manufacturers around the world providing the design and manufacture of microfluidic devices and microfluidic based instruments and systems. The company was formed to bring together experts in microfluidics, automated flow-chemistry, instrument design and product development and has its headquarters in Royston (near Cambridge) UK.

For more information, please click here

Contacts:
The Dolomite Centre Ltd
Unit 1, Anglian Business Park
Orchard Rd
Royston
Herts, SG8 5TW
United Kingdom
t: +44 (0)1763 242491
f: +44 (0)1763 246125

Copyright © Dolomite

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Microfluidics/Nanofluidics

Fabrication of a Miniature Paper-Based Electroosmotic Actuator November 29th, 2016

Researchers use acoustic waves to move fluids at the nanoscale November 15th, 2016

Researchers use temperature to control droplet movement: Method for moving fluids on a surface may find uses in condensers, microfluidics, and de-icing October 14th, 2016

Novel nanoscale detection of real-time DNA amplification holds promise for diagnostics: Research team led by Nagoya University develop a label-free method for detecting DNA amplification in real time based on refractive index changes in diffracted light September 12th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project