Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum coding proves feasible to overcome qubit loss error

An experimental setup for the demonstration of loss-tolerant quantum codes
An experimental setup for the demonstration of loss-tolerant quantum codes

Abstract:
Inspired by quantum mechanics, people have been dreaming of a new type of computers to revolutionize computing technique - quantum computers. Such dream machines will take advantage of the fact that the quantum bit (qubit), the fundamental unit of quantum information, can be in a superposition state and thus is able to store massive data and solve complicated problems at an incredible speed beyond the capacity of classical computers. To put this idea into practice, however, scientists are facing many hurdles, notable among which is the problem of qubit loss in quantum computers due to various reasons, including the disturbance from environmental noise.

Quantum coding proves feasible to overcome qubit loss error

China | Posted on September 1st, 2008

Recently, a cleverly designed experiment by a group of physicists led by Prof. PAN Jianwei from the University of Science and Technology of China (USTC), CAS, might shed some new light on this seemingly frustrating reality. For the first time ever, the group experimentally demonstrates a method of quantum coding to overcome the qubit loss error, a kind of decoherence especially prevailing in photonic quantum computation (QC). The work was reported in the 12 August issue of PNAS.

Qubit loss can occur in photon-based QC when for instance, photons are absorbed by the environment or fail to be picked up by a detector. This detrimental effect destroys the information carried by the qubit, introducing errors to the system. Furthermore, qubit loss error can also happen in some multi-level quantum hardware systems, such as those aimed at dealing with the states of multiple particles in ion traps and optical lattice. Theoretically, the states of qubits are defined in a two-level space, whereas in such multi-level systems the state of qubit can leak out to a larger space. In fact, most proposed quantum hardware involves multiple levels; therefore it has become a common issue for physicists to protect the fragile quantum information from loss due to the "leakage", provided that the whole quantum system remaining in the qubit space is the underlying assumption for the QC.

What the USTC team has demonstrated is that by encoding a single-qubit state with four entangled photons using a specially designed network, the logical information could be protected even if any one of the photons is lost. This research is inspired by the early theoretical work of Grassl et al., who in 1997 first proposed a special class of quantum erasure error correction code and proved that a 4-qubit code is sufficient to correct a detected error caused by the loss of one qubit. However, the actual realization of such quantum codes had proved an experimental challenge and was not tackled until 10 years later by the USTC team. It is worth mentioning that the team not only demonstrated the loss-tolerant quantum codes in the conventional quantum circuit model but also in the newly proposed one-way quantum computer model. Their work therefore solves a problem common in many physical systems and is deemed to constitute a necessary step toward scalable quantum information processing.

While optimistic critics are acclaiming the newly achieved progress, the team, however, is cautiously calm. "There are still a lot to do before we can build a practically workable quantum computer. Qubit loss is not the only problem for QC; other types of decoherence are to be overcome," remarks LU Chaoyang, a PhD student with the team. "But good news is, the loss-tolerant quantum codes demonstrated in our work can be further concatenated with other quantum error correction codes or decoherence-free space to tackle multiple decoherence, and may become a useful part for future implementations of quantum algorithms."

The USTC team has been focusing on photonic quantum information processing for some years. Previously, this group achieved a series of breakthroughs, including free-space quantum key distribution over a 13-km free space, five- and six-photon entanglement, demonstration of quantum logic gates and Shor's algorithm. The team is currently expanding their work toward manipulations of larger quantum computers and long-distance quantum communication by combining the technique of quantum memory based on atomic ensembles.

####

About Chinese Academy of Sciences
CAS strives to build itself into a scientific research base at advanced international level, a base for fostering and bringing up advanced S&T talents, and a base for promoting the development of China's high and new technology industries. By 2010, CAS will have about 80 national institutes noted for their powerful capacities in S&T innovation and sustainable development or with distinctive features; thirty of them will become internationally acknowledged, high-level research institutions, and three to five will be world class.

For more information, please click here

Contacts:
Chinese Academy of Sciences

Add: 52 Sanlihe Rd., Beijing China
Postcode: 100864
Tel: 86 10 68597289
Fax: 86 10 68512458

Chief-Editor's Information:
Guo Haiyan
the Editor
Bulletin of Chinese Academy of Sciences
CAS Institute of Policy & Management,
P.O.Box 8712, Beijing 100080, China.

Copyright © Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project