Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Boise State Cancer Research Breakthrough May Be 'Magic Bullet' for Cancer Treatment

Abstract:
Boise State researchers have made a remarkable breakthrough in cancer treatment that may provide the "magic bullet" for the debilitating effects of chemotherapy.

Boise State Cancer Research Breakthrough May Be 'Magic Bullet' for Cancer Treatment

Boise, ID | Posted on August 31st, 2008

The interdisciplinary group of researchers applied emerging nanotechnology techniques to traditional cancer research to come up with a highly effective method for the preferential killing of cancer cells while leaving ordinary cells healthy. This nanobiotechnology group is led by Boise State physics professor Alex Punnoose with strong contributions from biology professors Denise Wingett and Kevin Feris.

"One of the greatest challenges preventing advances in new therapeutic options for treating cancer is the inability of anticancer drugs to effectively differentiate between cancerous and normal healthy body cells," said Wingett, a cancer researcher. "Many commonly used chemotherapeutic drugs target rapidly dividing cells but suffer from a relatively low therapeutic index, which is the ratio of toxic dose to effective dose."

But the group discovered that zinc-oxide nanoparticles can preferentially kill cancer cells without impacting normal cells, a discovery that could potentially treat the cancer without the side effects caused by chemotherapy.

The group's discovery is described in the paper "Preferential Killing of Cancer Cells and Activated Human T Cells Using ZnO Nanoparticles," published in the July edition of the journal Nanotechnology. The paper has garnered significant attention in the scientific community, being downloaded more than 250 times in the first month of its publication, making it one of most popular articles in the 58 journals published by the Institute of Physics, the publisher of the journal Nanotechnology.

The article can be found at http://stacks.iop.org/0957-4484/19/295103.

"Until now, no group in the world has been able to produce inherent selective cancer-killing ability in nanoparticles," Wingett said. "Current chemotherapy drugs typically consist of single molecules and do not provide much room for manipulation of the molecule. But nanoparticles can be modified so that certain characteristics, like cancer-killing attributes, can be accentuated. Because of this, we think there is room for improvement in what we have already demonstrated."

Wingett said the selectivity of these nanomaterials may be enhanced by linking tumor-targeting proteins such as monoclonal antibodies, peptides, and small molecules to tumor-associated proteins, or by using nanoparticles for drug delivery. In addition to these future directions, the research team is exploring the possibility of altering the nanoparticles to further improve their inherent ability to kill cancer cells while sparing normal healthy body cells.

Cancer researchers across the country have taken notice of the work. Jame Abraham, the hematology/oncology section chief, director of the Comprehensive Breast Cancer Program and medical director at Mary Babb Randolph Cancer Center at West Virginia University, said that while more study is needed, the breakthrough has great promise.

"Oncology is always looking for a magic bullet, which can kill only the cancer cells, not killing the normal cells. This work is a major step toward that," Abraham said. "I think this work will pave the way for more targeted therapies."

The promise of the work has also helped the nanobiotech research group land a $503,000 National Science Foundation grant to acquire a fluorescent activated cell sorter that will give the research group greater ability to identify, analyze and sort nanoparticles.

In addition to enhancing this particular cancer research, the new equipment would support the research activity of at least 16 other Boise State researchers in the sciences, environmental health and engineering, as well as research being done at Northwest Nazarene University, the College of Idaho, the Boise Veterans Administration Medical Center, the Mountain States Tumor and Medical Research Institute and the local biotechnology industry.

####

About Boise State University
Boise State University is “The New U Rising” with record student enrollment, new academic buildings, additional degree programs and a growing research agenda.

For more information, please click here

Contacts:
Mike Journee
University Communications
(208) 426-1517

Copyright © Boise State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Nanomedicine

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tools

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Novel nanoscale detection of real-time DNA amplification holds promise for diagnostics: Research team led by Nagoya University develop a label-free method for detecting DNA amplification in real time based on refractive index changes in diffracted light September 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic