Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Boise State Cancer Research Breakthrough May Be 'Magic Bullet' for Cancer Treatment

Abstract:
Boise State researchers have made a remarkable breakthrough in cancer treatment that may provide the "magic bullet" for the debilitating effects of chemotherapy.

Boise State Cancer Research Breakthrough May Be 'Magic Bullet' for Cancer Treatment

Boise, ID | Posted on August 31st, 2008

The interdisciplinary group of researchers applied emerging nanotechnology techniques to traditional cancer research to come up with a highly effective method for the preferential killing of cancer cells while leaving ordinary cells healthy. This nanobiotechnology group is led by Boise State physics professor Alex Punnoose with strong contributions from biology professors Denise Wingett and Kevin Feris.

"One of the greatest challenges preventing advances in new therapeutic options for treating cancer is the inability of anticancer drugs to effectively differentiate between cancerous and normal healthy body cells," said Wingett, a cancer researcher. "Many commonly used chemotherapeutic drugs target rapidly dividing cells but suffer from a relatively low therapeutic index, which is the ratio of toxic dose to effective dose."

But the group discovered that zinc-oxide nanoparticles can preferentially kill cancer cells without impacting normal cells, a discovery that could potentially treat the cancer without the side effects caused by chemotherapy.

The group's discovery is described in the paper "Preferential Killing of Cancer Cells and Activated Human T Cells Using ZnO Nanoparticles," published in the July edition of the journal Nanotechnology. The paper has garnered significant attention in the scientific community, being downloaded more than 250 times in the first month of its publication, making it one of most popular articles in the 58 journals published by the Institute of Physics, the publisher of the journal Nanotechnology.

The article can be found at http://stacks.iop.org/0957-4484/19/295103.

"Until now, no group in the world has been able to produce inherent selective cancer-killing ability in nanoparticles," Wingett said. "Current chemotherapy drugs typically consist of single molecules and do not provide much room for manipulation of the molecule. But nanoparticles can be modified so that certain characteristics, like cancer-killing attributes, can be accentuated. Because of this, we think there is room for improvement in what we have already demonstrated."

Wingett said the selectivity of these nanomaterials may be enhanced by linking tumor-targeting proteins such as monoclonal antibodies, peptides, and small molecules to tumor-associated proteins, or by using nanoparticles for drug delivery. In addition to these future directions, the research team is exploring the possibility of altering the nanoparticles to further improve their inherent ability to kill cancer cells while sparing normal healthy body cells.

Cancer researchers across the country have taken notice of the work. Jame Abraham, the hematology/oncology section chief, director of the Comprehensive Breast Cancer Program and medical director at Mary Babb Randolph Cancer Center at West Virginia University, said that while more study is needed, the breakthrough has great promise.

"Oncology is always looking for a magic bullet, which can kill only the cancer cells, not killing the normal cells. This work is a major step toward that," Abraham said. "I think this work will pave the way for more targeted therapies."

The promise of the work has also helped the nanobiotech research group land a $503,000 National Science Foundation grant to acquire a fluorescent activated cell sorter that will give the research group greater ability to identify, analyze and sort nanoparticles.

In addition to enhancing this particular cancer research, the new equipment would support the research activity of at least 16 other Boise State researchers in the sciences, environmental health and engineering, as well as research being done at Northwest Nazarene University, the College of Idaho, the Boise Veterans Administration Medical Center, the Mountain States Tumor and Medical Research Institute and the local biotechnology industry.

####

About Boise State University
Boise State University is “The New U Rising” with record student enrollment, new academic buildings, additional degree programs and a growing research agenda.

For more information, please click here

Contacts:
Mike Journee
University Communications
(208) 426-1517

Copyright © Boise State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Tools

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project