Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Understanding the Science of Solar-Based Energy: More Researchers Are Better Than One

A snapshot showing the new oxygen catalyst in action in Dan Nocera's laboratory at MIT.

Credit: MIT/NSF
A snapshot showing the new oxygen catalyst in action in Dan Nocera's laboratory at MIT.

Credit: MIT/NSF

Abstract:
NSF-funded Chemical Bonding Center project provides a new approach for harnessing the sun's energy

Understanding the Science of Solar-Based Energy: More Researchers Are Better Than One

Arlington, VA | Posted on August 28th, 2008

With the assistance of a five-year $20 million award from the National Science Foundation (NSF), the California Institute of Technology (Caltech) Chemical Bonding Center (CBC) project, called "Powering the Planet," will increase the number of its collaborators to fulfill its goal of efficiently and economically converting solar energy and water into hydrogen and oxygen fuels.

The hydrogen and oxygen gases produced will be usable by a fuel cell, where they will react to reform water, generating electricity for powering an electric car or other devices. The gases may also be used as a source of energy after the sun goes down, and will generate a carbon-neutral or oil-free source of energy scalable to meet future global energy demands.

One of the center's key goals is to enhance U.S. economic competitiveness in the area of renewable energy.

"We have a very talented and dedicated group of students who are ready and able to tackle the fundamental chemistry problems that must be solved before it will be feasible to produce clean solar fuels on a large scale," said Harry B. Gray, Arnold O. Beckman professor of chemistry at Caltech and leader of the CBC. "We already have several industrial partners, and we intend to add more, as we want to move the new materials and processes invented by our center into the commercial arena as rapidly as possible."

More than 17 researchers and their students from 12 institutions located throughout the U.S. and Switzerland participate in the CBC.

The center is focusing its research efforts on developing a nanoscale-sized system that captures sunlight and converts it to an electrical charge. The interaction of the system's electrical charge and an oxygen catalyst produce oxygen gas and positively charged hydrogen ions or protons from water. The electrical charge, in combination with a hydrogen catalyst and protons, produces hydrogen gas.

"These transformations will require the development of new models for understanding multiple electron and proton transfer reactions and catalyst design," said Luis Echegoyen, director of NSF's Division of Chemistry.

The center has already obtained significant research results.

Daniel G. Nocera, the Henry Dreyfus professor of energy and professor of chemistry at the Massachusetts Institute of Technology (MIT) and one of the center's collaborators, recently announced that he and his postdoctoral associate, Matthew W. Kanan, successfully developed a new catalyst that produces oxygen gas from water.

In use with an electrical conducting glass electrode, the new catalyst, made from the earth-abundant materials cobalt and phosphate, produces oxygen gas from neutral pH water using a relatively low potential at room temperature and pressure (see video).

Even though the catalytic reaction is still not yet fully understood, its discovery moves the center one step closer to reaching its goal of using the sun's energy and water as a renewable energy source.

Nocera's and Kanan's research was published in the July 31, 2008, online issue of the journal Science.

"I strongly support Chemistry's CBC program as a way to tackle grand challenge problems with potentially transformative societal impacts such as sustainable energy. The Nocera work and the 'Powering the Planet' Center is an excellent example of this," said Tony Chan, assistant director for NSF's Mathematical and Physical Sciences Directorate.

Phase I of the CBC was established in 2005 when Caltech and MIT were awarded a $1.5 million three-year grant for initial research efforts and for establishing their CBC's management, education, broadening participation and public outreach plans. Caltech's CBC was one of the three Phase I CBCs funded by NSF in 2005 and the only CBC to receive 2008 Phase II funding.

Funding for Caltech's CBC was provided by award 0802907. The CBC is eligible for a $20 million five-year renewal in 2013.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Jennifer A. Grasswick
NSF
(703) 292-4972


Joshua A. Chamot
NSF
(703) 292-7730


Kathy Svitil
California Institute of Technology
(626) 395-8022


Program Contacts
Katharine J. Covert
NSF
(703) 292-4950


Principal Investigators
Harry B. Gray
California Institute of Technology
(626) 395-6500

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View a video of MIT scientists explaining how they recently discovered a catalyst that produces oxygen gas from water.

Related News Press

News and information

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Discoveries

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Announcements

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Energy

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

Solar/Photovoltaic

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project