Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Discovering the secrets of DNA repair

August 19th, 2008

Discovering the secrets of DNA repair

Abstract:
A modified DNA is helping scientists to understand the sophisticated DNA repair mechanisms that allow dormant bacteria to come 'back to life'.

Thomas Carell and Eva Bürckstümmer at the Ludwig Maximilian University of Munich, Germany, have made short DNA strands containing lesions. Carell explains that this is the key to understanding DNA repair. 'So far any study of this enigmatic process has been hampered by a lack of DNA containing this lesion,' he explains.

The lesions are analogues of those triggered when UV light acts on DNA stored in spores such as the Bacillus bacteria spore. In nature, these spores can lie dormant for many years, storing DNA, but then return to life, explains Carell. How spores store DNA and how lesion repair occurs are the questions the German duo would like to answer.

Carell and Bürckstümmer made their DNA strands by synthesising two isomers of a dinucleotide lesion analogue and incorporating them into DNA. They found that one DNA was more stable than the other, suggesting that the natural lesion could have a similar structure to the analogue in the more stable DNA. Carell points out that similar lesion analogues are substrates for the spore DNA repair enzyme so that the new strands could help further studies into the enzyme mechanism.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanomedicine

Ultra-short pulse lasers & Positioning August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Discoveries

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE