Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Candy-Coating Keeps Proteins Sweet

In this image, a ribbon of protein stands in the foreground against a computer-simulation of a stress field in a glassy material (like a sugar-glass) in the background. Researchers at NIST have developed a fast, inexpensive and effective method for evaluating the sugars pharmaceutical companies use to stabilize protein-drugs for storage at room temperature.

Credit: NIST
In this image, a ribbon of protein stands in the foreground against a computer-simulation of a stress field in a glassy material (like a sugar-glass) in the background. Researchers at NIST have developed a fast, inexpensive and effective method for evaluating the sugars pharmaceutical companies use to stabilize protein-drugs for storage at room temperature.

Credit: NIST

Abstract:
Sugar-frosting isn't just for livening up boring bran flakes; it can also preserve important therapeutic proteins. Researchers at the National Institute of Standards and Technology (NIST) have developed a fast, inexpensive and effective method for evaluating the sugars pharmaceutical companies use to stabilize protein-drugs for storage at room temperature. The group presented their findings* at the 236th American Chemical Society National Meeting and Exposition.

Candy-Coating Keeps Proteins Sweet

GAITHERSBURG, MD | Posted on August 19th, 2008

Protein-based drugs such as insulin and vaccines must be stabilized after manufacturing in order to be used safely. For the past 30 years, researchers have been preserving therapeutic proteins by freeze-drying them and coating them with a thin layer of various formulations of glass-like sugars that act to stabilize their molecular structures. This allows them to be safely stored for extended periods of time. Pharmaceutical companies, though they have general guidelines, develop their formulations essentially by trial and error and have to wait up to two years to see if the glasses are suitable. The new methods will help pharmaceutical companies make the best choice about which formulations to test and make it easier to stabilize drugs at room temperature. Room-temperature storage is vital when the pharmaceuticals are to be used in areas of the world where controlled storage conditions are not available.

The new findings build upon previous work** at NIST in which the team used neutron scattering to determine that rapidly solidified sugars preserve such proteins best when they suppress molecular motions lasting a nanosecond or less. Their latest experiments center on the hydrogen bonding that makes the sugars rigid. They have shown that the lifetimes of these bond networks can be measured directly with a fluorescent probe. This method is much more convenient than using neutrons and could be used for routine formulation evaluation.

Hydrogen bonds are responsible for many of water's properties; they make water a liquid at room temperature. All biological fluids, which are composed mostly of water, are also defined by their hydrogen bonds. Without these bonds, proteins would unfold, and life as we know it would be impossible. Sugars used to safeguard protein-based drugs act like cement, taking the place of water by bonding to the proteins and locking them in place. By rapidly freezing liquid sugar, its molecules have no time to form the usual orderly crystal patterns typically found in sugars that are solids at room temperature. Lead NIST researcher Marc Cicerone says that the randomly ordered sugar molecules fit the encased proteins like a glove, "stiffening" molecular motions that cause the proteins to chemically degrade.

Using the fluorescent probe, the team can now tell within minutes after freeze-drying the protein whether the formulation will be stable, reducing the time and expense associated with the "wait and see" method currently in use.

"Instead of needing relaxation measurements that require using neutron scattering—a national facility with limited time availability—we have developed a widely accessible solution in the form of readily available steady-state fluorescence measurements," Cicerone says. "This will allow pharmaceutical companies to adopt the new metrology we've developed."

When applied, the team's findings should help to increase the availability of viable medicines in places where refrigeration is scarce or unavailable.

* M. T. Cicerone and J. M. Johnson. Hydrogen bond network lifetime as an indicator of protein stability in pharmaceutical preparations. Biophysical & Biomolecular Symposium: Current Challenges in Protein Formulations. 236th ACS National Meeting, Philadelphia, Penn., Monday, Aug. 18, 2008.

** See "Keeping Drugs Stable without Refrigeration."
www.nist.gov/public_affairs/techbeat/tb2004_0616.htm#drugs

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Mark Esser

(301) 975-8735

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project