Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Chips for life' receive substantial European injection

Abstract:
Point-of-care diagnostics in the starting blocks

Tracking down cancer at a very early stage, studying cell growth, developing new medicines: future lab-on-a-chip systems will use nanoscale electrical fields to enable the detection and manipulation of cells and biomolecules. The University of Twente's eLab4Life project can expect a grant of 2.4 million euros from the European Research Council for this research.

'Chips for life' receive substantial European injection

Netherlands | Posted on August 18th, 2008

Lab-on-a-chip systems bring the laboratory to the patient instead of the other way around: a blood sample will no longer have to go to the laboratory and the patient will no longer have to wait for the result; a pocket-sized laboratory that gives the result on the spot will soon be available. This is called ‘point-of-care diagnostics'. According to Prof. Albert van den Berg, who leads the University of Twente's BIOS Lab-on-a-chip group, a real breakthrough can be expected from making special nanoscale structures for generating electrical fields that can be used to study individual cells or molecules: "So far a lot of experiments have been carried out with optical techniques that are sometimes difficult to integrate in a complete system. The new nanostructures we envisage will make it possible for us to miniaturize systems even further and to develop commercially-feasible equipment."

Precise control

Amongst other things, he anticipates that this research will provide opportunities for developing extremely sensitive chips that can detect biomarkers for cancer at a very early stage, and thus enable better treatment. Van Den Berg also wants to study cell growth on the new chips. The advantage of miniaturization here is that the environment in which the cell grows can be controlled very precisely. This precision is a great advantage for the development of new medicines, too: the researchers want, for example, to allow two types of cells to fuse on a chip to form new cells that will produce medicines.

Spin-off

Van den Berg's group, a unit of the MESA+ Institute for Nanotechnology, has built up a global reputation in this field. A chip has, for instance, already been developed that realizes point-of-care diagnostics for people who use the medicine lithium. The spin-off enterprise MediMate will be launching this development on the market in the near future. In the eLab4Life project the group will be working together with Prof. Jurriaan Huskens' Molecular Nanofabrication group and Prof. Clemens van Blitterswijk's Tissue Regeneration group.

The European Research Council's Advanced Grants are European subsidies for research that opens up new horizons. One hundred and five of almost a thousand applications in the field of Physical Sciences and Engineering have been awarded one of these grants. Nine of these winning projects are based in the Netherlands. Albert van den Berg's eLab4Life project can expect 2.4 million euros.

####

About University of Twente
The University of Twente is the site of a broad range of research projects in technological, scientific and social scientific disciplines. Research at the UT is mainly of a ‘fundamental-strategic’ nature: it focuses on issues which break fresh scientific ground and, at the same time, respond to needs in society. It is impossible to imagine research at the UT without this focus on practical usage. It underlies numerous new applications, appliances, systems and methods. In addition, the UT is a place for fundamental research, spurred on by the curiosity of its scientists.

For more information, please click here

Contacts:
Wiebe van der Veen
tel +31 (0)53 4894244

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project