Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IBM Builds World's Smallest SRAM Memory Cell

Abstract:
IBM (NYSE: IBM) and its joint development partners -- AMD, Freescale, STMicroelectronics, Toshiba and the College of Nanoscale Science and Engineering (CNSE) -- today announced the first working static random access memory (SRAM) for the 22 nanometer (nm) technology node, the world's first reported working cell built at its 300mm research facility in Albany, NY.

IBM Builds World's Smallest SRAM Memory Cell

YORKTOWN HEIGHTS, NY | Posted on August 18th, 2008

SRAM chips are precursors to more complex devices such as microprocessors.

The SRAM cell utilizes a conventional six-transistor design and has an area of 0.1um2, breaking the previous SRAM scaling barriers.

Researchers achieved this breakthrough at CNSE of the University at Albany, State University of New York. CNSE's Albany NanoTech is the world's most advanced university based nanoelectronics research complex. IBM and its partners do much of their leading-edge semiconductor research at CNSE.

A nanometer is one one-billionth of a meter or about 80,000 times smaller than the width of a human hair.

"We are working at the ultimate edge of what is possible -- progressing toward advanced, next-generation semiconductor technologies," said Dr. T.C. Chen, vice president of Science and Technology, IBM Research. "This new development is a critical achievement in the pursuit to continually drive miniaturization in microelectronics."

22 nm is two generations away in chip manufacturing. The next generation is 32 nm -- where IBM and its partners are in development with their leading 32 nm high-K metal gate technology that no other company or consortium can match.

Traditionally, an SRAM chip is made more dense by shrinking its basic building block, often referred to as a cell. IBM-alliance researchers optimized the SRAM cell design and circuit layout to improve stability and developed several novel fabrication processes in order to make the new SRAM cell possible. The researchers utilized high-NA immersion lithography to print the aggressive pattern dimensions and densities and fabricated the parts in its a state-of-the-art 300mm semiconductor research environment.

SRAM cell size is a key technology metric in the semiconductor industry, and this work demonstrates IBM and its partners' continued leadership in cutting-edge process technology.

Key enablers of the SRAM cell include band edge high-K metal gate stacks, transistors with less than 25 nm gate lengths, thin spacers, novel co-implants, advanced activation techniques, extremely thin silicide, and damascene copper contacts.

Additional details of this achievement will be presented at the IEEE International Electron Devices (IEDM) annual technical meeting to be held in San Francisco, CA, December 15-17, 2008.

####

For more information, please click here

Contacts:
Michael Loughran
IBM

914.945.1613
cell: 914.443.9816

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Chip Technology

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Memory Technology

New material science research may advance tech tools August 31st, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material August 23rd, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Announcements

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Events/Classes

STMicroelectronics Keynotes on the Next MEMS Wave at MIG Conference Asia September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic