Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Energy storage for hybrid vehicles

Abstract:
Hybrid technology combines the advantages of combustion engines and electric motors. Scientists are developing high-performance energy storage units, a prerequisite for effective hybrid motors.

Energy storage for hybrid vehicles

Germany | Posted on August 15th, 2008



The vehicle is powered by petroleum on the freeway and by electricity in town, thus using considerably less energy. A hybrid propulsion system switches over to generator operation when the brakes go on, producing electric current that is temporarily stored in a battery. The electric motor uses this current when starting up. This yields tremendous savings, particularly in urban traffic. But up to now, hybrid technology has always had a storage problem. Scientists from three Fraunhofer Institutes are developing new storage modules in a project called "Electromobility Fleet Test". The pilot project was launched by Volkswagen and Germany's Federal Ministry for the Environment BMU together with seven other partners. The Fraunhofer Institutes for Silicon Technology ISIT in Itzehoe, Integrated Circuits IIS in Nuremberg, and Integrated Systems and Device Technology IISB in Erlangen will be pooling their expertise for the next three years. The researchers are developing an energy storage module based on lithium-polymer accumulator technology that is suitable for use in vehicles.

"This module has to be able to withstand the harsh environmental conditions it will encounter in a hybrid vehicle, and above all it must guarantee high operational reliability and a long service life," states ISIT scientist Dr. Gerold Neumann, who coordinates the Fraunhofer activities. The researchers hope to reach this goal with new electrode materials that are kinder to the environment. A specially developed battery management system makes the energy storage device more durable and reliable. The experts are also researching into new concepts that will enable large amounts of energy to be stored in a small space. To do this, they integrate mechanical and electrical components in a single module, devising systems for temperature control, performance data registration and high-voltage safety.

The tasks involved are distributed between the three Fraunhofer Institutes according to their skills: The ISIT experts, who have long experience in developing and manufacturing lithium accumulators, are manufacturing the cells. Their colleagues at IIS are responsible for battery management and monitoring. The scientists from IISB are contributing their know-how on power electronics components to configure the accumulator modules. The development and configuration of the new energy storage module is expected to be finished by mid-2010. Volks-
wagen AG - the industrial partner in this project - will then carry out field trials to test the modules' suitability for everyday use in the vehicles.

####

About Fraunhofer-Gesellschaft
The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society.

For more information, please click here

Contacts:
Dr. Gerold Neumann
Phone: +49 4821 17-4219
Fax: 04821 / 17-4250/4251
Send an e-mail
Fraunhofer-Institut für Siliziumtechnologie
ISIT
Fraunhoferstraße 1
25524 Itzehoe

Peter Spies
Phone: +49 911 58061-6363
Fax: +49 911 58061-6398

Fraunhofer Institute for Integrated Circuits
IIS
Am Wolfsmantel 33
91058 Erlangen
www.iis.fraunhofer.de

Dr.-Ing. Martin März
Phone: +49 9131 761-310

Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie
IISB
Schottkystraße 10
91058 Erlangen

Copyright © Fraunhofer-Gesellschaft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Discoveries

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Announcements

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Automotive/Transportation

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Bio-inspired energy storage: A new light for solar power: Graphene-based electrode prototype, inspired by fern leaves, could be the answer to solar energy storage challenge April 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project