Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lab-on-a-chip Technology: Microfluidics Aids Major Advance in Environmental Testing

Abstract:
Microfluidics experts, Dolomite, in collaboration with the UK's National Centre for Atmospheric Science have announced the development of a new generation of microfluidics-based environmental testing equipment for use in air quality monitoring.

Lab-on-a-chip Technology: Microfluidics Aids Major Advance in Environmental Testing

UK | Posted on August 5th, 2008

Microfluidics is an exciting new field of science and engineering that enables very small-scale fluid control and analysis, allowing instrument manufacturers to develop smaller, more cost-effective and more powerful systems. With this lab-on-a-chip technology, entire complex chemical management and analysis systems can be created in a microfluidic chip and interfaced with, for example, electronics and optical detection systems.

Headed by Professor Alastair Lewis, the team from the National Centre for Atmospheric Science is undertaking initial studies to evaluate the feasibility of developing a portable microfluidics-based environmental testing module. Today's air monitoring procedure usually requires the collection of air samples at remote locations, which then have to be returned to a laboratory for analysis using large and expensive gas chromatography instruments. The procedure is slow and costly. Professor Lewis's research is aimed at developing a small-scale portable analysis system that will enable air quality to be analyzed and recorded in-situ. Such a system would have a dramatic effect on the speed of response to adverse changes in air quality.

"This is a great application of our technology," said Gillian Davis Regional Manager at Dolomite. "This is what microfluidics does best. It enables smaller, yet more powerful systems to be developed. Systems that may have been laboratory-based, can become more portable or even hand held, and at the same time can have increased accuracy and repeatability."

For this project Dolomite had to create a microfluidic device with an amazing 7.5m of micro-channel running through a 10cm square piece of glass. This is one of the largest devices and longest channels so far developed by Dolomite (this technology tends to be based in a smaller format). The fabrication processes used to create such a microfluidic device have some similarity to those used in the electronics industry. The channels through which the fluids flow and interact are etched into materials such as glass or polymers using similar photolithography processes, for example. The patterned layers are then very accurately aligned and fused together and drilled to provide microscopic ports through which the chemicals or gases can enter and leave the device.

"The real challenge with this project was the fusing of such large etched glass plates," said Gillian Davis. "Aligning the plates to ensure the etched microchannels were perfectly matched took a great deal of experience and put our capabilities to quite a test."

Dolomite is now considered to be a worldwide leader in Microfluidics. So much so, that in 2005 they won funding from the UK Department of Trade and Industry's Micro and Nano Technology (MNT) Manufacturing Initiative. This £2m funding, allowed Dolomite to establish excellent microfabrication facilities, with cleanrooms, precision glass processing facilities and applications laboratories.

"We are very pleased with both the progress of our development and the excellent support we have received from Dolomite," said Professor Alastair Lewis. "Dolomite has been very responsive to our demanding requests and has helped us make significant progress in recent months. It's clear from our research that microfluidics is very much an enabling technology for the next generation of environmental testing equipment. It offers us an exciting step forward in providing in-situ environmental monitoring capabilities with the possibility of more rapid response to adverse changes in air quality."

####

About UK's National Centre for Atmospheric Science (NCAS)
The National Centre for Atmospheric Science (NCAS) is a world leader in atmospheric science. With an annual budget of £9M, NCAS carries out research programmes in climate change science, atmospheric composition (including air quality), weather (including hazardous weather) and state-of-the-art technologies for observing and modelling the atmosphere (including a world-leading research aircraft). We have over 100 research scientists, including UK and world experts to work on our research programmes and provide support to the academic community. These programmes are distributed throughout the UK, at 15 UK universities and research institutes. NCAS also provides research outcomes for government policy-making. NCAS is a research centre of the Natural Environment Research Council with its headquarters at the University of Leeds. www.ncas.ac.uk

Professor Alastair Lewis is Director of the NCAS Atmospheric Composition programme, and is based at the Chemistry Department, University of York.

Dolomite Centre Ltd

Established in 2005 as the world’s first microfluidic application centre, Dolomite is focussed on working with customers to turn their concepts for microfluidic applications into reality. With an in-depth understanding of chemistry and the life sciences, expertise in microfabrication and microfluidics, together with instrument design and development capabilities, Dolomite is enabling some of the world’s top providers in fields as diverse as environmental monitoring, drug discovery and forensic science to deliver microfluidic systems to the market place. To find out more about Dolomite, please visit – www.dolomite-microfluidics.com

For more information, please click here

Contacts:
Dolomite Centre Ltd:
Dr Gillian Davis, Regional Manager
Tel: +44 1763 242491


Media: Richard Blackburn
Energi Technical Limited
Tel: +44 1603 278228


National Centre for Atmospheric Science:
Dr Louisa Watts
Science Communications and Knowledge Exchange Manager
Tel: +44 (0) 1793 411609
Mobile: +44 (0)7786214886

Copyright © UK's National Centre for Atmospheric Science (NCAS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project