Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL researchers analyze material with 'colossal ionic conductivity'

  	
The molecular model of the ion-conducting material shows that numerous vacancies at the interface between the two layers create an open pathway through which ions can travel.
The molecular model of the ion-conducting material shows that numerous vacancies at the interface between the two layers create an open pathway through which ions can travel.

Abstract:
A new material characterized at the Department of Energy's Oak Ridge National Laboratory could open a pathway toward more efficient fuel cells.

ORNL researchers analyze material with 'colossal ionic conductivity'

OAK RIDGE, TN | Posted on August 2nd, 2008

The material, a super-lattice developed by researchers in Spain, improves ionic conductivity near room temperature by a factor of almost 100 million, representing "a colossal increase in ionic conduction properties," said Maria Varela of ORNL's Materials Science and Technology Division, who characterized the material's structure with senior researcher Stephen Pennycook.

The analysis was done with ORNL's 300 kilovolt Z-contrast scanning transmission electron microscope, which can achieve aberration-corrected resolutions near 0.6 angstrom, until recently a world record. The direct images show the crystal structure that accounts for the material's conductivity.

"It is amazing," Varela said. "We can see the strained, yet still ordered, interface structure that opens up a wide pathway for ions to be conducted."

Solid oxide fuel cell technology requires ion-conducting materials -- solid electrolytes -- that allow oxygen ions to travel from cathode to anode. However, existing materials have not provided atom-scale voids large enough to easily accommodate the path of a conducted ion, which is much bigger than, for example, an electron.

"The new layered material solves this problem by combining two materials with very different crystal structures. The mismatch triggers a distortion of the atomic arrangement at their interface and creates a pathway through which ions can easily travel," Varela said.

Other fuel cell materials force ions to travel through tight pathways with few spaces for the ions to occupy, slowing their progress. Rather than forcing the ions to jump from hole to hole, the new material has "lots of vacant spaces to be occupied," said Varela, so the ions can travel much more quickly.

Unlike previous fuel cell materials, which have to achieve high temperatures to conduct ions, the new material maintains ionic conductivity near room temperatures. High temperatures have been a major roadblock for developers of fuel cell technology.

The research team with Spain's Universidad Complutense de Madrid and Universidad Politécnica de Madrid produced the material and observed its outstanding conductivity properties, but the structural characteristics that enable the material to conduct ions so well were not known until the material was put under the ultra-high resolution microscopes at ORNL.

The paper, a collaboration between researchers at the Universities of Madrid and at ORNL, was published today in Science.

ORNL is managed by UT-Battelle for the Department of Energy.

####

For more information, please click here

Contacts:
Sarah Wright
Communications and External Relations
865.574.6631

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

Laboratories

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

News laser design offers more inexpensive multi-color output: Design can control color, intensity of light by varying cavity architecture July 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Discoveries

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Announcements

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Energy

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Fuel Cells

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Electrocatalyst nanostructures key to improved fuel cells, electrolyzers June 5th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project