Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Penn Scientists Demonstrate Potential of Graphene Films as Next-Generation Transistors

Abstract:
Physicists at the University of Pennsylvania have characterized an aspect of graphene film behavior by measuring the way it conducts electricity on a substrate. This milestone advances the potential application of graphene, the ultra-thin, single-atom thick carbon sheets that conduct electricity faster and more efficiently than silicon, the current material of choice for transistor fabrication.

Penn Scientists Demonstrate Potential of Graphene Films as Next-Generation Transistors

PHILADELPHIA, PA | Posted on July 31st, 2008

The research team, led by A.T. Charlie Johnson, professor in the Department of Physics and Astronomy at Penn, demonstrated that the surface potential above a graphene film varies with the thickness of the film, in quantitative agreement with the predictions of a nonlinear Thomas-Fermi theory of the interlayer screening by relativistic low energy charge carriers. The study appears online in the journal Nanoletters and will appear in print in the August edition.

Johnson's study, "Surface Potentials and Layer Charge Distributions in Few-Layer Graphene Films," clarifies experimentally the electronic interaction between an insulating substrate and few-layer graphene films, or FLGs, the standard model for next-generation transistors.

It is more practical to develop devices from FLGs, rather than single-layer materials. To make use of these films, graphene must be placed on a substrate to be functionalized as a transistor. Placing the film on a substrate causes an electronic interaction between the two materials that transfers carriers to or from, or "dopes," the FLG.

The focus of the Penn study was aimed at understanding how these doped charges distribute themselves among the different layers of graphene. The distribution of these charges determines the behavior of graphene transistors and other circuits, making it a critical component for device engineering. The team measured the surface potential of the material to determine how these doped charges were distributed along the transistor, as well as how the surface potential of the transistor varied with the number of layers of graphene employed.

Using electrostatic force microscopy measurements, the team characterized the surface potential of the graphene film and found it to be dependent on the thickness of the graphene layers. The thicker the carbon strips, the higher the electronic surface potential, with the surface potential approaching its limit for films that were five or more sheets thick. This behavior is unlike that found for conventional metals or semiconductors which would have, respectively, much shorter or longer screening lengths.

The surface potential measurements were in agreement with a theory developed by Penn professor and physicist Eugene Mele. The theory makes an important approximation, by treating electrostatic interactions in the film but neglecting quantum mechanical tunneling between neighboring layers. This allows the model to be solved analytically for the charge distribution and surface potential.

While prior theoretical work considered the effect of a substrate on the electronic structure of FLG, few experiments have directly probed the graphene-substrate interaction. Quantitative understanding of charge exchange at the interface and the spatial distribution of the resulting charge carriers is a critical input to device design.

Graphene-derived nanomaterials are a promising family of structures for application as atomically thin transistors, sensors and other nanoelectronic devices. These honeycomb sheets of sp2 -bonded carbon atoms and graphene sheets rolled into molecular cylinders share a set of electronic properties making them ideal for use in nanoelectronics: tunable carrier type and density, exceptionally high carrier mobility and structural control of their electronic band structures. A significant advantage of graphene is its two-dimensionality, making it compatible with existing planar device architectures. The challenge is realizing the potential of these materials by fabricating and insulating them on substrates.

The study was performed by Sujit S. Datta and Mele of the Department of Physics and Astronomy in the School of Arts and Sciences at Penn as well as Douglas R. Strachan of the Department of Physics and Astronomy and also the Department of Materials Science and Engineering within Penn's School of Engineering and Applied Science.

The study was funded by Penn's Nano/Bio Interface Center through the National Science Foundation, the Army Research Office and the Department of Energy.

####

For more information, please click here

Contacts:
Jordan Reese
215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Physics

Breakthrough in OLED technology March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Chip Technology

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE