Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Penn Scientists Demonstrate Potential of Graphene Films as Next-Generation Transistors

Abstract:
Physicists at the University of Pennsylvania have characterized an aspect of graphene film behavior by measuring the way it conducts electricity on a substrate. This milestone advances the potential application of graphene, the ultra-thin, single-atom thick carbon sheets that conduct electricity faster and more efficiently than silicon, the current material of choice for transistor fabrication.

Penn Scientists Demonstrate Potential of Graphene Films as Next-Generation Transistors

PHILADELPHIA, PA | Posted on July 31st, 2008

The research team, led by A.T. Charlie Johnson, professor in the Department of Physics and Astronomy at Penn, demonstrated that the surface potential above a graphene film varies with the thickness of the film, in quantitative agreement with the predictions of a nonlinear Thomas-Fermi theory of the interlayer screening by relativistic low energy charge carriers. The study appears online in the journal Nanoletters and will appear in print in the August edition.

Johnson's study, "Surface Potentials and Layer Charge Distributions in Few-Layer Graphene Films," clarifies experimentally the electronic interaction between an insulating substrate and few-layer graphene films, or FLGs, the standard model for next-generation transistors.

It is more practical to develop devices from FLGs, rather than single-layer materials. To make use of these films, graphene must be placed on a substrate to be functionalized as a transistor. Placing the film on a substrate causes an electronic interaction between the two materials that transfers carriers to or from, or "dopes," the FLG.

The focus of the Penn study was aimed at understanding how these doped charges distribute themselves among the different layers of graphene. The distribution of these charges determines the behavior of graphene transistors and other circuits, making it a critical component for device engineering. The team measured the surface potential of the material to determine how these doped charges were distributed along the transistor, as well as how the surface potential of the transistor varied with the number of layers of graphene employed.

Using electrostatic force microscopy measurements, the team characterized the surface potential of the graphene film and found it to be dependent on the thickness of the graphene layers. The thicker the carbon strips, the higher the electronic surface potential, with the surface potential approaching its limit for films that were five or more sheets thick. This behavior is unlike that found for conventional metals or semiconductors which would have, respectively, much shorter or longer screening lengths.

The surface potential measurements were in agreement with a theory developed by Penn professor and physicist Eugene Mele. The theory makes an important approximation, by treating electrostatic interactions in the film but neglecting quantum mechanical tunneling between neighboring layers. This allows the model to be solved analytically for the charge distribution and surface potential.

While prior theoretical work considered the effect of a substrate on the electronic structure of FLG, few experiments have directly probed the graphene-substrate interaction. Quantitative understanding of charge exchange at the interface and the spatial distribution of the resulting charge carriers is a critical input to device design.

Graphene-derived nanomaterials are a promising family of structures for application as atomically thin transistors, sensors and other nanoelectronic devices. These honeycomb sheets of sp2 -bonded carbon atoms and graphene sheets rolled into molecular cylinders share a set of electronic properties making them ideal for use in nanoelectronics: tunable carrier type and density, exceptionally high carrier mobility and structural control of their electronic band structures. A significant advantage of graphene is its two-dimensionality, making it compatible with existing planar device architectures. The challenge is realizing the potential of these materials by fabricating and insulating them on substrates.

The study was performed by Sujit S. Datta and Mele of the Department of Physics and Astronomy in the School of Arts and Sciences at Penn as well as Douglas R. Strachan of the Department of Physics and Astronomy and also the Department of Materials Science and Engineering within Penn's School of Engineering and Applied Science.

The study was funded by Penn's Nano/Bio Interface Center through the National Science Foundation, the Army Research Office and the Department of Energy.

####

For more information, please click here

Contacts:
Jordan Reese
215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Physics

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

'Perfect Liquid' Quark-Gluon Plasma is the Most Vortical Fluid: Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity" August 4th, 2017

The first light atomic nucleus with a second face July 20th, 2017

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Chip Technology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14 ASIC design system August 9th, 2017

Discoveries

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project