Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Northeastern University Scientists Discover Rapid, Cost-Effective, 100% Recyclable Method to Produce Ultra-strong Magnets

(a) A low and (b)high magnification TEM image of the SmCo nanoblades. (c) HRTEM image showing the growth direction of the blade is [100] (perpendicular to the (200) planes), and one of the surface plane parallel to the growth direction is the {001} plane. (d) The electron diffraction pattern from the nanoblade shown in (c) indicating that the blade is orientated along the [010] zone axis, and is consistent with the HRTEM image, showing the SmCo5 phase.
(a) A low and (b)high magnification TEM image of the SmCo nanoblades. (c) HRTEM image showing the growth direction of the blade is [100] (perpendicular to the (200) planes), and one of the surface plane parallel to the growth direction is the {001} plane. (d) The electron diffraction pattern from the nanoblade shown in (c) indicating that the blade is orientated along the [010] zone axis, and is consistent with the HRTEM image, showing the SmCo5 phase.

Abstract:
Innovative Processing Method Set to Bring Changes to Federal and Commercial Industries

Northeastern University Scientists Discover Rapid, Cost-Effective, 100% Recyclable Method to Produce Ultra-strong Magnets

Boston, MA | Posted on July 28th, 2008

Ultra-strong, high-temperature, high-performance permanent magnet compounds, such as Samarium Cobalt, are the mainstay materials for several industries that rely on high-performance motor and power generation applications, including the Department of Defense (DOD) and the automotive industry. Until now, producing Samarium Cobalt has been a difficult and expensive multi-step process. Northeastern University researchers have broken new ground with an innovative invention of a rapid, high-volume and cost-effective one-step method for producing pure Samarium Cobalt rare earth (RE) permanent magnet materials.

Invented by lead scientist C.N. Chinnasamy, Ph.D., at Northeastern's Center for Microwave Magnetic Materials, the direct chemical synthesis process is able to produce Samarium Cobalt rapidly and in large amounts, at a small fraction of the cost of the current industry method. Also, the process is environmentally friendly, with 100% recyclable chemicals, and readily scalable to large volume synthesis to meet the needs for the myriad of advanced permanent magnet applications. The study describing the invention is published in the latest issue of Applied Physics Letters (July 28, 2008).

"A single step chemical process has been pursued for decades with little success," said Vincent Harris, William Lincoln Smith Chair Professor and Director of the Center for Microwave Magnetic Materials and Integrated Circuits at Northeastern University and Principal Investigator of the program. "This research breakthrough represents a potentially disruptive step forward in the cost-effective processing of these important materials."

Samarium Cobalt magnets are superior to other classes of permanent magnetic materials for advanced high-temperature applications and the Northeastern invention goes beyond the currently known fabrication process of these nanostructured magnets. Unlike the traditional multi-step metallurgical techniques that provide limited control of the size and shape of the final magnetic particles, the Northeastern scientists' one-step method produces air-stable "nanoblades" (elongated nanoparticles shaped like blades,) that allow for a more efficient assembly that may ultimately result in smaller and lighter magnets without sacrificing performance. Northeastern University has filed an international patent application on the synthesis, size, shape and structure controlled RE-TM based nanocomposites particles and production of high energy product RE-TM nanocrystalline permanent magnets.

"Such unusually shaped particles should prove valuable in the processing of anisotropic magnets that are highly sought in many DOD and commercial applications and are anticipated to lead to lighter and more energy-efficient end products," said C.N. Chinnasamy. We also produced size, shape and structure controlled Rare earth (RE)-Transition metal nanoparticles directly and production of high emergy products are under process.

"Northeastern's new one-step process has the potential to reduce complexity
and associated costs of processing Samarium Cobalt magnets, which are used in
many advanced DOD weapon systems," said Richard T. Fingers, Ph.D., Chief, Energy Power Thermal Division of the Air Force Research Laboratory.

Underscoring the significance of the Northeastern invention relative to the high-performance rare earth magnet industry, Jinfang Liu, Ph.D., Vice President of Technology and Engineering at Electron Energy Corporation, a leading developer of permanent magnetic materials, added, "The development of stable Samarium Cobalt nanoparticles using this one-step chemical synthesis method may motivate more scientist and engineers to work on the development of next generation magnets."

This revolutionary invention is anticipated to not only revitalize the permanent magnet industry, it has the potential to bring major changes to several federal and commercial industries, including its potential to impact the size, weight, and performance of aircraft, ships, and land-based vehicles, as well as contribute to more efficient computer technologies and emerging biomedical applications.

"This work represents the most promising advance in rare earth permanent magnet processing in many years," said Laura Henderson Lewis, Professor of Chemical Engineering and Chair of the Department of Chemical Engineering at Northeastern University and a collaborator on this project. "I expect it to revitalize international interest in the development of this important class of engineering materials."

####

For more information, please click here

Contacts:
C. N. Chinnasamy (Chins) Ph.D
Research Scientist
Center for Microwave Magnetic Materials & Integrated Circuits
Dept. of Electrical and Computer Engineering
440 DANA
360 Huntington Avenue
Northeastern University
Boston MA 02115
USA
Also at:134 Egan Research Center
Northeastern University
Boston MA 02115 USA
Tel.: 617.373.5185


Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Marine/Watercraft

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Transparent gel-based robots can catch and release live fish: Made from hydrogel, robots may one day assist in surgical operations, evade underwater detection February 2nd, 2017

NIST-made 'sun and rain' used to study nanoparticle release from polymers October 5th, 2016

New material to revolutionize water proofing September 12th, 2016

Discoveries

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Materials/Metamaterials

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Automotive/Transportation

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Aerospace/Space

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGMs three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project