Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Northeastern University Scientists Discover Rapid, Cost-Effective, 100% Recyclable Method to Produce Ultra-strong Magnets

(a) A low and (b)high magnification TEM image of the SmCo nanoblades. (c) HRTEM image showing the growth direction of the blade is [100] (perpendicular to the (200) planes), and one of the surface plane parallel to the growth direction is the {001} plane. (d) The electron diffraction pattern from the nanoblade shown in (c) indicating that the blade is orientated along the [010] zone axis, and is consistent with the HRTEM image, showing the SmCo5 phase.
(a) A low and (b)high magnification TEM image of the SmCo nanoblades. (c) HRTEM image showing the growth direction of the blade is [100] (perpendicular to the (200) planes), and one of the surface plane parallel to the growth direction is the {001} plane. (d) The electron diffraction pattern from the nanoblade shown in (c) indicating that the blade is orientated along the [010] zone axis, and is consistent with the HRTEM image, showing the SmCo5 phase.

Abstract:
Innovative Processing Method Set to Bring Changes to Federal and Commercial Industries

Northeastern University Scientists Discover Rapid, Cost-Effective, 100% Recyclable Method to Produce Ultra-strong Magnets

Boston, MA | Posted on July 28th, 2008

Ultra-strong, high-temperature, high-performance permanent magnet compounds, such as Samarium Cobalt, are the mainstay materials for several industries that rely on high-performance motor and power generation applications, including the Department of Defense (DOD) and the automotive industry. Until now, producing Samarium Cobalt has been a difficult and expensive multi-step process. Northeastern University researchers have broken new ground with an innovative invention of a rapid, high-volume and cost-effective one-step method for producing pure Samarium Cobalt rare earth (RE) permanent magnet materials.

Invented by lead scientist C.N. Chinnasamy, Ph.D., at Northeastern's Center for Microwave Magnetic Materials, the direct chemical synthesis process is able to produce Samarium Cobalt rapidly and in large amounts, at a small fraction of the cost of the current industry method. Also, the process is environmentally friendly, with 100% recyclable chemicals, and readily scalable to large volume synthesis to meet the needs for the myriad of advanced permanent magnet applications. The study describing the invention is published in the latest issue of Applied Physics Letters (July 28, 2008).

"A single step chemical process has been pursued for decades with little success," said Vincent Harris, William Lincoln Smith Chair Professor and Director of the Center for Microwave Magnetic Materials and Integrated Circuits at Northeastern University and Principal Investigator of the program. "This research breakthrough represents a potentially disruptive step forward in the cost-effective processing of these important materials."

Samarium Cobalt magnets are superior to other classes of permanent magnetic materials for advanced high-temperature applications and the Northeastern invention goes beyond the currently known fabrication process of these nanostructured magnets. Unlike the traditional multi-step metallurgical techniques that provide limited control of the size and shape of the final magnetic particles, the Northeastern scientists' one-step method produces air-stable "nanoblades" (elongated nanoparticles shaped like blades,) that allow for a more efficient assembly that may ultimately result in smaller and lighter magnets without sacrificing performance. Northeastern University has filed an international patent application on the synthesis, size, shape and structure controlled RE-TM based nanocomposites particles and production of high energy product RE-TM nanocrystalline permanent magnets.

"Such unusually shaped particles should prove valuable in the processing of anisotropic magnets that are highly sought in many DOD and commercial applications and are anticipated to lead to lighter and more energy-efficient end products," said C.N. Chinnasamy. We also produced size, shape and structure controlled Rare earth (RE)-Transition metal nanoparticles directly and production of high emergy products are under process.

"Northeastern's new one-step process has the potential to reduce complexity
and associated costs of processing Samarium Cobalt magnets, which are used in
many advanced DOD weapon systems," said Richard T. Fingers, Ph.D., Chief, Energy Power Thermal Division of the Air Force Research Laboratory.

Underscoring the significance of the Northeastern invention relative to the high-performance rare earth magnet industry, Jinfang Liu, Ph.D., Vice President of Technology and Engineering at Electron Energy Corporation, a leading developer of permanent magnetic materials, added, "The development of stable Samarium Cobalt nanoparticles using this one-step chemical synthesis method may motivate more scientist and engineers to work on the development of next generation magnets."

This revolutionary invention is anticipated to not only revitalize the permanent magnet industry, it has the potential to bring major changes to several federal and commercial industries, including its potential to impact the size, weight, and performance of aircraft, ships, and land-based vehicles, as well as contribute to more efficient computer technologies and emerging biomedical applications.

"This work represents the most promising advance in rare earth permanent magnet processing in many years," said Laura Henderson Lewis, Professor of Chemical Engineering and Chair of the Department of Chemical Engineering at Northeastern University and a collaborator on this project. "I expect it to revitalize international interest in the development of this important class of engineering materials."

####

For more information, please click here

Contacts:
C. N. Chinnasamy (Chins) Ph.D
Research Scientist
Center for Microwave Magnetic Materials & Integrated Circuits
Dept. of Electrical and Computer Engineering
440 DANA
360 Huntington Avenue
Northeastern University
Boston MA 02115
USA
Also at:134 Egan Research Center
Northeastern University
Boston MA 02115 USA
Tel.: 617.373.5185


Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Marine/Watercraft

XPRIZE Opens Team Registration for $2 Million Wendy Schmidt Ocean Health XPRIZE: Teams From Private, Public, and Social Sectors Encouraged to Compete in Global Competition to Revolutionize Ocean pH Sensor Technology February 12th, 2014

Paving the way for real-world nanotechnology products September 29th, 2013

Zycraft Completes Phase 1 Development of Vigilant Unmanned Surface Vessel September 20th, 2013

Research and Markets: Global Nanotechnology and Nanomaterials Industry - 2013 Report June 24th, 2013

Discoveries

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Materials/Metamaterials

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Announcements

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Automotive/Transportation

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Aerospace/Space

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

NASA Engineers Prepare Game Changing Cryotank for Testing April 9th, 2014

Space Industry Leaders Countdown To Space Tech Expo 2014 – Opening Next Week: Space Tech Expo and Conference 2014 opens its doors at the Long Beach Convention Center, Long Beach April 1 – 3 March 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE