Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Slower switching for quantum coherence: The performance of quantum computing can be improved by operating logic gates slowly

Figure 1: The slow and robust transfer of a qubit from one quantum state (1) to another (2). The temporal evolution of the energy levels (upper panels) and the populations of those energy levels (lower panels) are shown for a two-state quantum system. The population transfer from one quantum state to another occurs only in the circuits with an electromagnetic (coupling) pulse (right-hand panels).
Figure 1: The slow and robust transfer of a qubit from one quantum state (1) to another (2). The temporal evolution of the energy levels (upper panels) and the populations of those energy levels (lower panels) are shown for a two-state quantum system. The population transfer from one quantum state to another occurs only in the circuits with an electromagnetic (coupling) pulse (right-hand panels).

Abstract:
Over the past decade scientists have made rapid progress towards building a quantum computer, but many obstacles still remain. One important requirement is that researchers must achieve extremely accurate control of the electrical signals used in quantum logic gates. A research team based at the RIKEN Advanced Sciences Institute (formerly the Frontier Research System) in Wako has proposed a new method for operating quantum logic gates that could help reach the required accuracy1.

Slower switching for quantum coherence: The performance of quantum computing can be improved by operating logic gates slowly

Japan | Posted on July 25th, 2008

Calculations in quantum computing are performed on units of quantum information called qubits, which can be implemented in superconductors. The slightest noise or interference from the external world can cause qubits to lose their quantum information and revert to classical behavior. This problem, known as decoherence, has been partly overcome by Ďadiabatic' quantum computing in which the quantum algorithm is designed to keep the whole system in a relatively robust state throughout the calculation.

The researchers' proposal could reduce decoherence further by avoiding the need for fast logic gates acting on qubits. Their alternative approach involves slowly transferring populations of qubits between selected quantum states (Fig. 1).

The quantum algorithm is not changed in the new proposal. Franco Nori of RIKEN and the University of Michigan in the USA, explains: "The only thing that has changed is the way that the gates are operated. Instead of using so-called pi-pulses, which require very accurate electrical signals to manipulate the qubits, we propose using slow population transfers, which are not affected by imperfections in the manipulation signal."

The qubits must still be very accurately controlled, but now the strict requirement is shifted to a different step in the quantum gate, sometimes referred to as the phase gate. This step is easier to perform than the population transfer. Thus, the strictest accuracy requirement is now imposed on a step where the available technology allows accurate design.

"When you manipulate quantum states slowly, nature works on your side and protects the quantum state against imperfections in the control signals," says Lian-Fu Wei of the RIKEN team, now at Southwest Jiaotong University in Chengdu, China.

Team-member Sahel Ashhab summarizes the approach by saying: "We identified a difficulty in the requirement of accurate control pulses and asked the question: can we perform quantum gates without having to deal with this?" The theoretical analysis has shown that it is indeed possible to do so, and the researchers hope that experimental tests of their idea will be performed in the near future.
Reference

1. Wei, L.F., Johansson, J.R., Cen, L.X., Ashhab, S. & Nori, F. Controllable coherent population transfers in superconducting qubits for quantum computing. Physical Review Letters 100, 113601 (2008).

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Quantum Computing

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project