Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Exotic materials using neptunium, plutonium provide insight into superconductivity

Abstract:
Physicists at Rutgers and Columbia universities have gained new insight into the origins of superconductivity - a property of metals where electrical resistance vanishes - by studying exotic chemical compounds that contain neptunium and plutonium. While superconductivity holds promise for massive energy savings in power transmission, and for novel uses such as levitating trains, today it occurs only at extremely cold temperatures. As a result, its use is now limited to specialized medical and scientific instruments. Over the past two decades, scientists have made metals that turn superconducting at progressively higher temperatures, but even those have to be cooled below the temperature of liquid nitrogen.

Exotic materials using neptunium, plutonium provide insight into superconductivity

NJ | Posted on July 21st, 2008

Still, physicists believe room temperature superconductivity may be possible. The work reported by the Rutgers and Columbia physicists is a step in that direction - shedding new light on the connection between magnetism and superconductivity.

"The exotic compounds we're studying will not become practical superconducting materials; however, by studying them we can learn the trends that govern a material's transition to superconductivity" said Piers Coleman, physics professor at Rutgers.

Coleman, along with Rutgers graduate student Rebecca Flint and Columbia postdoctoral research scientist Maxim Dzero, are publishing their findings in an upcoming issue of the journal Nature Physics. Their paper has been posted to the journal's advance publication web site at: dx.doi.org/10.1038/nphys1024.

The compounds they've studied are made out of elements in the actinide series, including neptunium and plutonium. In these materials, active electrons are in "f-orbitals." In contrast, materials that make up today's highest-temperature superconductors, including copper or iron, have active electrons in "d-orbitals." The f-electron materials generally have lower superconducting temperatures than their d-electron counterparts; but they are easier to make and may be easier to understand.

"Electrons must bind together into pairs called 'Cooper pairs' for materials to become superconducting," Flint said. "In earlier studies, a small amount of magnetism was lethal to this pairing; however, in these materials, magnetism is not bad. It actually appears to play a central role in driving the pairing effect."

These new superconductors are part of a class of materials referred to as "heavy electron superconductors," metals that are filled with tiny, atomic-sized magnets known as "spins." When electrons pass through this forest of magnets, they slow down and move sluggishly as if they were extremely heavy.

"In most heavy electron superconductors, the electrons have to get heavy before they go superconducting," said Coleman. "But in the highest temperature versions, the electrons get heavy and become superconducting at the same time."

To understand this effect, the scientists have proposed a new type of electron pairing. "We've found that the electrons form much stronger pairs if they team up with one of the tiny atomic magnets - a combination that might be called a quantum-mechanical 'menage a trios,'" said Coleman. "The spin in the middle brings the pair of electrons close together, and a stronger pair means superconductivity at higher temperatures."

The scientists hope these ideas can be applied to d-electron materials, where the superconductivity may occur much closer to room temperature.

####

For more information, please click here

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Discoveries

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Announcements

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE