Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Exotic materials using neptunium, plutonium provide insight into superconductivity

Abstract:
Physicists at Rutgers and Columbia universities have gained new insight into the origins of superconductivity - a property of metals where electrical resistance vanishes - by studying exotic chemical compounds that contain neptunium and plutonium. While superconductivity holds promise for massive energy savings in power transmission, and for novel uses such as levitating trains, today it occurs only at extremely cold temperatures. As a result, its use is now limited to specialized medical and scientific instruments. Over the past two decades, scientists have made metals that turn superconducting at progressively higher temperatures, but even those have to be cooled below the temperature of liquid nitrogen.

Exotic materials using neptunium, plutonium provide insight into superconductivity

NJ | Posted on July 21st, 2008

Still, physicists believe room temperature superconductivity may be possible. The work reported by the Rutgers and Columbia physicists is a step in that direction - shedding new light on the connection between magnetism and superconductivity.

"The exotic compounds we're studying will not become practical superconducting materials; however, by studying them we can learn the trends that govern a material's transition to superconductivity" said Piers Coleman, physics professor at Rutgers.

Coleman, along with Rutgers graduate student Rebecca Flint and Columbia postdoctoral research scientist Maxim Dzero, are publishing their findings in an upcoming issue of the journal Nature Physics. Their paper has been posted to the journal's advance publication web site at: dx.doi.org/10.1038/nphys1024.

The compounds they've studied are made out of elements in the actinide series, including neptunium and plutonium. In these materials, active electrons are in "f-orbitals." In contrast, materials that make up today's highest-temperature superconductors, including copper or iron, have active electrons in "d-orbitals." The f-electron materials generally have lower superconducting temperatures than their d-electron counterparts; but they are easier to make and may be easier to understand.

"Electrons must bind together into pairs called 'Cooper pairs' for materials to become superconducting," Flint said. "In earlier studies, a small amount of magnetism was lethal to this pairing; however, in these materials, magnetism is not bad. It actually appears to play a central role in driving the pairing effect."

These new superconductors are part of a class of materials referred to as "heavy electron superconductors," metals that are filled with tiny, atomic-sized magnets known as "spins." When electrons pass through this forest of magnets, they slow down and move sluggishly as if they were extremely heavy.

"In most heavy electron superconductors, the electrons have to get heavy before they go superconducting," said Coleman. "But in the highest temperature versions, the electrons get heavy and become superconducting at the same time."

To understand this effect, the scientists have proposed a new type of electron pairing. "We've found that the electrons form much stronger pairs if they team up with one of the tiny atomic magnets - a combination that might be called a quantum-mechanical 'menage a trios,'" said Coleman. "The spin in the middle brings the pair of electrons close together, and a stronger pair means superconductivity at higher temperatures."

The scientists hope these ideas can be applied to d-electron materials, where the superconductivity may occur much closer to room temperature.

####

For more information, please click here

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Discoveries

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Announcements

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project