Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Controlled growth of truly nanoscale single crystal fullerites for device applications

Abstract:
University of Surrey researchers have found a way to make ultra-small pure carbon crystals entirely formed from the spherical carbon ‘buckyball' molecule known as C60. The method used involves mixing two liquids together, one of which contains C60, at low temperature. Lozenge shaped crystals can be quickly obtained with widths of 80 nm which is about 100,000 times smaller than the width of a pencil and much smaller than previously thought possible using this method. The electronic properties of the C60 molecules that make up the small crystals are of particular importance for developing new nanoelectronic devices such as solar cells and gas sensors. This new development may therefore allow researchers to accelerate the development of these nanotechnologies based on this simple method of making these high purity ultra-small C60 components.

Controlled growth of truly nanoscale single crystal fullerites for device applications

UK | Posted on July 14th, 2008

The work which is highlighted on the front cover of the 28th July 2008 issue of the Royal Society of Chemistry's Journal of Materials Chemistry demonstrates a fast and simple method of making C60 fullerite crystals with diameters of 80 nm. Importantly for future applications the fullerites are produced in high yield and their shape controlled through the variation of solvent, concentration and temperature. Significantly this work demonstrates that existing models of fullerite growth need re-evaluating as these models predict a minimum size of ~400 nm, well above that demonstrated by the team.

The ability to produce large quantities of fullerites raises the potential for their incorporation into devices to enhance a desired property [1]. Possible applications of fullerite rods include adsorbents, catalysts and membranes due to their relatively high surface area to volume ratio. Potential electronic devices that may benefit from such materials include n-type organic transistors due to relatively high electron mobility of C60 (~0.1 cm-2V-1s-1), optical devices, thin film organic solar cells, organic light emitting diodes and photodetectors.

Researcher Lok Cee Chong said: "The ability to control fullerite growth on a nanoscale may lead to a number of exciting applications. We are just beginning to obtain glimpses of these in my current work as I complete my PhD".

Dr Richard Curry who leads this research said: "The results of this work are of immediate significance to a wide range of technologies that use organic materials. These new nanoscale carbon materials will allow us to continue to develop enhanced devices such as sensors and solar cells to address the grand challenges facing society today".

Prof Ravi Silva, Director of the Advanced Technology Institute (ATI), said: "This is very exciting work of the type that leads to further serendipitous discoveries. Ultimately it demonstrates how the ATI and wider research carried out in the UK continues to lead the world in the development of new technologies".

The full research paper is available from the Royal Society of Chemistry Journal of Materials Chemistry website: www.rsc.org/Publishing/Journals/JM/article.asp?doi=b802417k

References cited:

[1] ‘Structural and Optoelectronic Properties of C60 Rods Obtained Via a Rapid Synthesis Route'. Yizheng Jin, Richard J. Curry, Jeremy Sloan, Ross A. Hatton, Lok Cee Chong, Nicholas Blanchard, Vlad Stolojan, Harold W. Kroto and S. Ravi P. Silva. J. Mater. Chem., 16, 3715 - 3720 (2006). http:dx.doi.org/10.1039/ B609074E

####

About University of Surrey
Surrey seeks to attract researchers of the highest calibre. Ground-breaking research at the University of Surrey is bringing direct benefits to many spheres of life - helping industry to maintain its competitive edge and creating improvements in the areas of health, medicine, space science, the environment, communications, defence and social policy.

For more information, please click here

Contacts:
Stuart Miller
Press Office
University of Surrey
Tel: 01483 689314
Mob: +44 (0) 7792 210570

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Chemistry

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

PEN Inc. Announces Strategy to Broaden Clarity Branded Products Business February 4th, 2016

Chip Technology

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Discoveries

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Announcements

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Energy

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Photonics/Optics/Lasers

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Solar/Photovoltaic

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanostructural Changes in Solar Cells to Increase Their Efficiency January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic