Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Deep Photonics Introduces a Flexible Picosecond Pulsed 266 nm Fiber Laser

Abstract:
New Laser Platform Designed Specifically for Photovoltaic Applications

Deep Photonics Introduces a Flexible Picosecond Pulsed 266 nm Fiber Laser

Corvallis, OR | Posted on July 10th, 2008

Deep Photonics Corp., an innovative technology company manufacturing deep ultraviolet fiber laser solutions for the semiconductor, electronics and photovoltaic marketplace, today announced the introduction of the FLP-266-PPP, a 2 watt Picosecond 266 nm fiber laser featuring adjustable pulse width, pulse burst packets, and variable pulse packet frequency.

Designed for the photovoltaic industry, the FLP-266-PPP is a deep ultraviolet fiber laser, combining high-power output with extended lifetime, output stability, and reliability needed for demanding laser applications. This laser introduces our new Picosecond Packet Pulsing (Pł) technology, providing a significant innovation in cold ablation of materials. Pł technology delivers extremely accurate depth control with pulse packet energy ranging from 30nJ - 30µJ. This proprietary pulsing technology provides the optimum combination of precise, efficient material ablation while virtually eliminating deleterious effects due to thermal heating of adjacent material. The FLP-266-PPP platform combines benchmark performance with design innovations to deliver consistent performance at a low operating cost.

"We have specifically targeted the photovoltaic industry with the FLP-266-PPP platform. Photovoltaic manufacturers and equipment OEMs have specifically requested an ultra-fast, short pulse laser that could cleanly and accurately ablate current and future material sets at higher throughput than today's current technology. The FLP-266-PPP directly addresses this need. Our deep UV fiber lasers deliver break-through performance, multiple wavelength output, pulse-to-pulse stability and high average power to the photovoltaic industry," said Joe LaChapelle, CEO of Deep Photonics. "We are very pleased to continue to deliver as planned on our technology roadmap."

The output characteristics of the FLP-266-PPP make it ideal for applications including edge isolation, laser fired contacts, via thru contacts, front surface contacts and thin film patterning.

"The FLP-266-PPP introduces cold ablation processing to photovoltaic applications," commented Dr. Ted Alekel, Chief Technology Officer for Deep Photonics. "The combination of 266 nm ionizing photonic energy, picosecond pulse packets, and adjustable repetition rates makes the FLP-266-PPP ideal for solar cell manufacturing applications. Due to their short wavelength and high peak power, picosecond 266 nm fiber lasers can remove sub-micron layers with fast plume evaporation and without excessive heat transfer to a substrate. The laser's high repetition rates of energetic 266 nm laser pulses require lower laser fluence than what is compulsory for nanosecond lasers. As a result, our innovative fiber laser diminishes the heating, melting, and recasting associated with longer wavelengths and longer nanosecond pulses. Machined features are sharper and can be made smaller."

The new 266 nm Deep UV Fiber Laser operates at up to 2 watts and allows the operator to define energy delivery strategies that feature 10-50 ps pulses grouped in packets from 10 ns up to 10 μs, variable pulse packet frequencies 250 kHz to 25 MHz, making the laser ideal for processing crystalline silicon (c-Si) and new advanced thin films (CdTe & CuInSe2).

####

About Deep Photonics Corp.
Headquartered in Corvallis, Oregon, Deep Photonics Corporation was founded in 2004 to develop leading-edge, high-power, deep ultraviolet fiber lasers. The Corvallis facility supports world-class laser and crystal manufacturing functions including optical materials R&D, laser R&D, custom laser design, and volume manufacturing activities. The company is dedicated to become the market leader in high power, DUV fiber lasers that address the existing need for sub-300 nanometer lasers in the semiconductor manufacturing, micromachining, medical and telecommunications industries. The company is currently commercializing patented and proprietary materials and fiber laser technology for the production of novel solid-state lasers at 266 nm.

For more information, please click here

Contacts:
Deep Photonics Corp.
Vice President
Jim Field, 541-738-8888

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Thin films

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Solar/Photovoltaic

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic