Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Deep Photonics Introduces a Flexible Picosecond Pulsed 266 nm Fiber Laser

Abstract:
New Laser Platform Designed Specifically for Photovoltaic Applications

Deep Photonics Introduces a Flexible Picosecond Pulsed 266 nm Fiber Laser

Corvallis, OR | Posted on July 10th, 2008

Deep Photonics Corp., an innovative technology company manufacturing deep ultraviolet fiber laser solutions for the semiconductor, electronics and photovoltaic marketplace, today announced the introduction of the FLP-266-PPP, a 2 watt Picosecond 266 nm fiber laser featuring adjustable pulse width, pulse burst packets, and variable pulse packet frequency.

Designed for the photovoltaic industry, the FLP-266-PPP is a deep ultraviolet fiber laser, combining high-power output with extended lifetime, output stability, and reliability needed for demanding laser applications. This laser introduces our new Picosecond Packet Pulsing (P) technology, providing a significant innovation in cold ablation of materials. P technology delivers extremely accurate depth control with pulse packet energy ranging from 30nJ - 30J. This proprietary pulsing technology provides the optimum combination of precise, efficient material ablation while virtually eliminating deleterious effects due to thermal heating of adjacent material. The FLP-266-PPP platform combines benchmark performance with design innovations to deliver consistent performance at a low operating cost.

"We have specifically targeted the photovoltaic industry with the FLP-266-PPP platform. Photovoltaic manufacturers and equipment OEMs have specifically requested an ultra-fast, short pulse laser that could cleanly and accurately ablate current and future material sets at higher throughput than today's current technology. The FLP-266-PPP directly addresses this need. Our deep UV fiber lasers deliver break-through performance, multiple wavelength output, pulse-to-pulse stability and high average power to the photovoltaic industry," said Joe LaChapelle, CEO of Deep Photonics. "We are very pleased to continue to deliver as planned on our technology roadmap."

The output characteristics of the FLP-266-PPP make it ideal for applications including edge isolation, laser fired contacts, via thru contacts, front surface contacts and thin film patterning.

"The FLP-266-PPP introduces cold ablation processing to photovoltaic applications," commented Dr. Ted Alekel, Chief Technology Officer for Deep Photonics. "The combination of 266 nm ionizing photonic energy, picosecond pulse packets, and adjustable repetition rates makes the FLP-266-PPP ideal for solar cell manufacturing applications. Due to their short wavelength and high peak power, picosecond 266 nm fiber lasers can remove sub-micron layers with fast plume evaporation and without excessive heat transfer to a substrate. The laser's high repetition rates of energetic 266 nm laser pulses require lower laser fluence than what is compulsory for nanosecond lasers. As a result, our innovative fiber laser diminishes the heating, melting, and recasting associated with longer wavelengths and longer nanosecond pulses. Machined features are sharper and can be made smaller."

The new 266 nm Deep UV Fiber Laser operates at up to 2 watts and allows the operator to define energy delivery strategies that feature 10-50 ps pulses grouped in packets from 10 ns up to 10 μs, variable pulse packet frequencies 250 kHz to 25 MHz, making the laser ideal for processing crystalline silicon (c-Si) and new advanced thin films (CdTe & CuInSe2).

####

About Deep Photonics Corp.
Headquartered in Corvallis, Oregon, Deep Photonics Corporation was founded in 2004 to develop leading-edge, high-power, deep ultraviolet fiber lasers. The Corvallis facility supports world-class laser and crystal manufacturing functions including optical materials R&D, laser R&D, custom laser design, and volume manufacturing activities. The company is dedicated to become the market leader in high power, DUV fiber lasers that address the existing need for sub-300 nanometer lasers in the semiconductor manufacturing, micromachining, medical and telecommunications industries. The company is currently commercializing patented and proprietary materials and fiber laser technology for the production of novel solid-state lasers at 266 nm.

For more information, please click here

Contacts:
Deep Photonics Corp.
Vice President
Jim Field, 541-738-8888

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Thin films

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project