Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > EU project FAST-DOT homes in on laser technology research

Abstract:
Laser technology has revolutionised the world of medicine in ways never before thought of. More and more often the scalpel is giving way to a new generation of lasers. Now the FAST-DOT project, backed by the EU with EUR 10.1 million in financing, is underway to develop a new line of lasers for biomedical applications.

EU project FAST-DOT homes in on laser technology research

Europe | Posted on July 8th, 2008

Led by a team located at the University of Dundee, 18 European partners from 12 countries will pool their knowledge and resources to develop the next generation of lasers which will be used for biomedical applications. Their combined efforts mean that they are able to conduct nearly 100 person years of work in a fraction of the time.

According to Professor Edik Rafailov of the University of Dundee, 'This project will revolutionise the use of lasers in the biomedical field, providing both practitioners and researchers with pocket sized ultra high performance lasers at a substantially lower cost, which will make their widespread use affordable.'

The new lasers that will be developed will not only be much smaller but also more energy efficient than current lasers in use. Current lasers are not portable and are heavy on energy consumption. The new lasers will be designed for use in microscopy and nanosurgery, where high precision cutting, imaging and treatment therapies will be made possible.

According to Neil Stewart, FAST-DOT project manager, 'The objectives of the project are to use a technology called quantum dot materials, probably gallium arsenide, and exploit their lasing characteristics for use in biomedical applications, such as laser tweezing for microsurgery.'

The new lasers will mean that surgeons and life scientists will have access to much higher performance and lower cost lasers than are currently available and will open up exciting new application areas for lasers in biomedicine. There is also hope that new lasers under development will also decrease in size.

Currently, lasers are roughly the size of a shoebox. FAST-DOT hopes to bring down the size to that of a matchbox while bringing the cost down to a tenth of what they currently are.

Dr Stewart also claimed that the new lasers would be applicable in the field of micro-surgery. 'With these lasers we ought to be able to take that down to about a very few microns. And because of the differences in the way the energy is controlled, it enables us to deliver very controlled amounts of energy so we are also going to be investigating things like tissue welding,' he said.

Laser systems for use in medicine were initially seen as a surgical tool which is minimally invasive, and were used for the ablation, cutting, or coagulation of tissue. As a result, their earliest application was witnessed in the field of general surgery and laparoscopic surgery. By the 1990s lasers were gaining popularity in the field of ophthalmology for sight correction.

Now however lasers are being used in a diagnostic sense thanks to their non-invasive capabilities as well as being utilized for the detection and monitoring of certain diseases.

####

For more information, please click here

Copyright © Cordis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project