Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > “Smart Bomb” Nanoparticle Strategy Impacts Metastasis

Abstract:
A new treatment strategy using molecular "smart bombs" to target metastasis with anti-cancer drugs leads to good results using significantly lower doses of toxic chemotherapy, with less collateral damage to surrounding tissue, according to a collaborative team of researchers at the University of California, San Diego. By designing a "nanoparticle" drug delivery system, the UC San Diego team, led by Moores UCSD Cancer Center Director of Translational Research David Cheresh, Ph.D., has identified a way to target chemotherapy to achieve a profound impact on metastasis in pancreatic and kidney cancer in mice.

“Smart Bomb” Nanoparticle Strategy Impacts Metastasis

San Diego, CA | Posted on July 7th, 2008

In a study to be published online the week of July 7 in advance of publication in the Proceedings of the National Academy of Sciences (PNAS), Cheresh, professor and vice chair of pathology, and members of his team report that the nanoparticle carrying a payload of chemotherapy homes in on a protein marker called integrin ανβ3 - found on the surface of certain tumor blood vessels where it is associated with development of new blood vessels and malignant tumor growth.

The team found that the nanoparticle/drug combination didn't have much impact on primary tumors, but stopped pancreatic and kidney cancers from metastasizing throughout the bodies of mice. They showed that a greatly reduced dosage of chemotherapy can achieve the desired effect because the drug selectively targets the specific blood vessels that feed the cancerous lesion and kills the lesion without destroying surrounding tissue. The destruction of healthy tissue is a side-effect when chemotherapy is administered systemically, flooding the body with cancer-killing toxins.

"We were able to establish the desired anti-cancer effect while delivering the drug at levels 15 times below what is needed when the drug is used systemically," said Cheresh. "Even more interesting is that the metastatic lesions were more sensitive to this therapy than the primary tumor."

The study is an example of an initiative that joins researchers from UC San Diego's Health Sciences and the Jacobs School of Engineering to improve health care through innovative technologies. Engineers and oncologists working together designed a nanoparticle - a microscopic-sized particle of 100 nanometers, made of various lipid-based polymers - which delivers the cancer cell-killing drug doxorubicin to the network of blood vessels supporting the tumor that express the ανβ3 protein.

"Doxorubicin is known to be an effective anti-cancer drug, but has been difficult to give patients an adequate dose without negative side effects," Cheresh said. "This new strategy represents the first time we've seen such an impact on metastatic growth, and it was accomplished without the collateral damage of weight loss or other outward signs of toxicity in the patient."

Cancer metastasis is traditionally much more difficult to treat than the primary tumor, and is what usually leads to the patient's death. Because metastasis is more reliant on new blood vessel growth, or angiogenesis, than established tumors are, Cheresh theorized that targeting the anti-cancer drug to the sites of new blood vessel growth has a preferential effect on metastatic lesions.

"Traditional cancer therapies are often limited, or non-effective over time because the toxic side effects limit the dose we can safely deliver to the patient," said Cheresh. "This new drug delivery system offers an important advance in treating metastatic disease."

Additional contributors to the study were Eric A. Murphy, Bharat K. Majeti, Leo A. Barnes, Milan Makale, Sara M. Weis and Wolfgang Wrasidlo, all of the Department of Pathology and Moores UCSD Cancer Center. The study was supported by the National Institutes of Health and the National Cancer Institute Nanotechnology Alliance.

####

About UC San Diego
Nestled along the Pacific Ocean on 1,200 acres of coastal woodland, UC San Diego is a powerful magnet for those seeking a fresh, next-generation approach to education and research. Since its founding over four decades ago, UC San Diego — one of the ten campuses in the world-renowned University of California system — has rapidly achieved the status as one of the top institutions in the nation for higher education and research. UC San Diego’s interdisciplinary ethos and tradition of innovation and risk-taking underlie its research strength and ability to recruit top scholars and students.

For more information, please click here

Contacts:
Debra Kain
619-543-6163

Copyright © UC San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Nanomedicine

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Discoveries

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Announcements

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic