Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Visualizing atomic-scale acoustic waves in nanostructures

Electromagnetic radiation is produced when an acoustic wave (purple) generates electric currents (red) as it propagates past an interface between two piezoelectric materials. The radiation propagates outside of the materials and can be detected to determine the shape of the acoustic wave with nearly atomic scale resolution.
Electromagnetic radiation is produced when an acoustic wave (purple) generates electric currents (red) as it propagates past an interface between two piezoelectric materials. The radiation propagates outside of the materials and can be detected to determine the shape of the acoustic wave with nearly atomic scale resolution.

Abstract:
Acoustic waves play many everyday roles - from communication between people to ultrasound imaging. Now the highest frequency acoustic waves in materials, with nearly atomic-scale wavelengths, promise to be useful probes of nanostructures such as LED lights.

Visualizing atomic-scale acoustic waves in nanostructures

LIVERMORE, CA | Posted on July 3rd, 2008

Enter Lawrence Livermore National Laboratory scientists, who discovered a new physical phenomenon that enables them to see high frequency waves by combining molecular dynamics simulations of shock waves with an experimental diagnostic, terahertz (THz) radiation. (The hertz is the base unit of frequency. One hertz simply means one cycle per second. A terahertz is 10^12 hertz.).

The Livermore scientists performed computer simulations of the highest frequency acoustic waves forming spontaneously at the front of shock waves or generated by sub-picosecond pulse-length lasers.

They discovered that, under some circumstances, when such a wave crosses an interface between two materials, tiny electric currents are generated at the interface. These currents produce electromagnetic radiation of THz frequencies that can be detected a few millimeters away from the interface. Part of the wave is effectively converted to electromagnetic radiation, which propagates out of the material where it can be measured.

Most molecular dynamics simulations of shock waves connect to experiments through electronic properties, such as optical reflectivity.

"But this new approach connects to the much lower frequency THz radiation produced by the individual atoms moving around in the shock wave," said Evan Reed, lead author of a paper that appears in the July 7 edition of the journal, Physical Review Letters. "This kind of diagnostic promises to provide new information about shocked materials like the dynamics of crystals pushed to ultra-high strain rates."

Using molecular dynamics simulations, the team, made up of Livermore's Reed and Michael Armstrong in collaboration with Los Alamos National Laboratory colleagues shows that the time-history of the wave can be determined with potentially sub-picosecond, nearly atomic time and space resolution by measuring the electromagnetic field.

Reed and colleagues studied the effect for an interface between two thin films, which are used in LED (light-emitting diode) nanostructures, and are piezoelectric (electric currents that are generated when they are squeezed). Piezoelectric materials have been used for decades as arrival time gauges for shock-wave experiments but have been limited by electrical equipment that can only detect acoustic frequencies less than 10 gigathertz (GHz), precluding observation of the highest frequency acoustic waves. The new THz radiation technique can help improve the time resolution of such approaches.

The technique has other applications as well. It can be applied to determine the structure of many kinds of electronic devices that are constructed using thin film layered structures, such as field-effect transistors.

"The detection of high frequency acoustic waves also has been proposed for use in imaging of quantum dot nanostructures used in myriad optical devices, possibly including solar cells in the future," Reed said. "The technology is not there yet for that application, but our work represents a step closer."

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
Phone: (925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Thin films

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

A colossal breakthrough for topological spintronics: BiSb expands the potential of topological insulators for ultra-low-power electronic devices August 2nd, 2018

Picosunís ALD solutions make quality watches tick July 26th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Future electronic components to be printed like newspapers July 20th, 2018

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displaysí back-reflectors June 27th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Possible Futures

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Announcements

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Quantum Dots/Rods

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Solar/Photovoltaic

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project