Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Visualizing atomic-scale acoustic waves in nanostructures

Electromagnetic radiation is produced when an acoustic wave (purple) generates electric currents (red) as it propagates past an interface between two piezoelectric materials. The radiation propagates outside of the materials and can be detected to determine the shape of the acoustic wave with nearly atomic scale resolution.
Electromagnetic radiation is produced when an acoustic wave (purple) generates electric currents (red) as it propagates past an interface between two piezoelectric materials. The radiation propagates outside of the materials and can be detected to determine the shape of the acoustic wave with nearly atomic scale resolution.

Abstract:
Acoustic waves play many everyday roles - from communication between people to ultrasound imaging. Now the highest frequency acoustic waves in materials, with nearly atomic-scale wavelengths, promise to be useful probes of nanostructures such as LED lights.

Visualizing atomic-scale acoustic waves in nanostructures

LIVERMORE, CA | Posted on July 3rd, 2008

Enter Lawrence Livermore National Laboratory scientists, who discovered a new physical phenomenon that enables them to see high frequency waves by combining molecular dynamics simulations of shock waves with an experimental diagnostic, terahertz (THz) radiation. (The hertz is the base unit of frequency. One hertz simply means one cycle per second. A terahertz is 10^12 hertz.).

The Livermore scientists performed computer simulations of the highest frequency acoustic waves forming spontaneously at the front of shock waves or generated by sub-picosecond pulse-length lasers.

They discovered that, under some circumstances, when such a wave crosses an interface between two materials, tiny electric currents are generated at the interface. These currents produce electromagnetic radiation of THz frequencies that can be detected a few millimeters away from the interface. Part of the wave is effectively converted to electromagnetic radiation, which propagates out of the material where it can be measured.

Most molecular dynamics simulations of shock waves connect to experiments through electronic properties, such as optical reflectivity.

"But this new approach connects to the much lower frequency THz radiation produced by the individual atoms moving around in the shock wave," said Evan Reed, lead author of a paper that appears in the July 7 edition of the journal, Physical Review Letters. "This kind of diagnostic promises to provide new information about shocked materials like the dynamics of crystals pushed to ultra-high strain rates."

Using molecular dynamics simulations, the team, made up of Livermore's Reed and Michael Armstrong in collaboration with Los Alamos National Laboratory colleagues shows that the time-history of the wave can be determined with potentially sub-picosecond, nearly atomic time and space resolution by measuring the electromagnetic field.

Reed and colleagues studied the effect for an interface between two thin films, which are used in LED (light-emitting diode) nanostructures, and are piezoelectric (electric currents that are generated when they are squeezed). Piezoelectric materials have been used for decades as arrival time gauges for shock-wave experiments but have been limited by electrical equipment that can only detect acoustic frequencies less than 10 gigathertz (GHz), precluding observation of the highest frequency acoustic waves. The new THz radiation technique can help improve the time resolution of such approaches.

The technique has other applications as well. It can be applied to determine the structure of many kinds of electronic devices that are constructed using thin film layered structures, such as field-effect transistors.

"The detection of high frequency acoustic waves also has been proposed for use in imaging of quantum dot nanostructures used in myriad optical devices, possibly including solar cells in the future," Reed said. "The technology is not there yet for that application, but our work represents a step closer."

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
Phone: (925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds October 31st, 2016

Inspiration from the ocean: An interdisciplinary team of researchers at UC Santa Barbara has developed a non-toxic, high-quality surface treatment for organic field-effect transistors October 18th, 2016

Thin films

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Possible Futures

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Quantum Dots/Rods

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project