Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Cold copper stops the spin

Figure 1: Electron scatterings inside copper (Cu) sometimes flip the spin directions. On the other hand, scatterings at the boundary between Cu and copper oxide (CuOx) flip the spin every time.

Copyright © 2008 Takashi Kimura
Figure 1: Electron scatterings inside copper (Cu) sometimes flip the spin directions. On the other hand, scatterings at the boundary between Cu and copper oxide (CuOx) flip the spin every time.
Copyright © 2008 Takashi Kimura

Abstract:
The performance of spintronic devices depends on several temperature-dependent scattering mechanisms

Cold copper stops the spin

Japan | Posted on June 20th, 2008

In the future, many electronic systems could be replaced by spintronic devices, which communicate information via the intrinsic angular momentum, or spin, of electrons. Now researchers at the RIKEN Advanced Science Institute (formerly the Frontier Research System) in Wako and the University of Tokyo have completed an important study into the effects that temperature can have on spintronic devices1.

Spintronics relies on the effective transport of ‘spin-polarized' currents, in which electrons all have the same spin. Spin-polarized currents flow well in magnetic materials, but when they enter non-magnetic materials the electrons begin to lose their spin polarization in a process called spin-flip scattering (Fig. 1). The length scale over which the electrons remain polarized, called the spin diffusion length, is particularly important for fabricating devices.

Spin-flip scattering is known to occur in two different ways. At high temperatures, most of the scattering is caused by electrons interacting with ‘waves of heat' called phonons. Otherwise scattering is caused by impurities, defects and boundaries in the material.

To investigate the effects of temperature on spin-flip scattering, the researchers fabricated a ‘lateral spin valve' consisting of two magnetic electrodes that inject a spin-polarized current through a copper wire. The distance between electrodes was altered in order to observe the spin diffusion length of the copper at different temperatures.

The researchers found that the spin diffusion length of the copper increased as temperature was decreased. This was expected, because the phonon scattering decreases with temperature. However, there was an unexpected maximum at around 30 K (-243.15 °C), below which the spin diffusion length decreased again.

The researchers explained this effect by considering the wire surfaces, which are oxidized by the surrounding air and cause strong spin-flip scattering. At very low temperatures, the polarized electrons travel further on average, so they are more likely to collide with the wire surfaces. This explanation was verified by tests with different thicknesses of wire, showing that thinner wires with greater surface-area-to-volume ratio experience a greater level of scattering at low temperatures.

In very small devices, the scattering by oxidized copper surfaces could cause problems for real, room-temperature applications. RIKEN team-member Takashi Kimura suggests making use of aluminum, which reflects electrons rather than scattering them.

"We did not observe the spin signal maximum at low temperature in an aluminum lateral spin valve," he explains. "Therefore, if we use an aluminum capping layer on top of the copper wire, it may prevent the present problem."
Reference

1. Kimura, T., Sato, T. & Otani, Y. Temperature evolution of spin relaxation in a NiFe/Cu lateral spin valve. Physical Review Letters 100, 066602 (2008).

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Spintronics

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Discoveries

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Announcements

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic