Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Large-Scale Screening of Nanomaterial Toxicity and Activity

Abstract:
As researchers develop an ever-expanding toolkit of nanoparticles for use as drug and imaging agent delivery vehicles, there is a growing need to understand how a given nanoparticle's physical and chemical properties affect biological activity and toxicity. Now, two researchers working independently of one another have develop new methods for measuring the biological activity of nanomaterials in a highly systematic manner that enable them to draw important insights about nanomaterial biologic activity.

Large-Scale Screening of Nanomaterial Toxicity and Activity

Bethesda , MD | Posted on June 16th, 2008

Reporting its work in the Proceedings of the National Academy of Sciences of the United States of America, a research group lead by Ralph Weissleder, M.D., Ph.D., co-principal investigator of the MIT-Harvard Center of Cancer Nanotechnology Excellence, and Stuart Schreiber, Ph.D., of the Broad Institute of Harvard and MIT, describes its development of a broad panel of in vitro assays that measure a variety of nanoparticle properties. They then use a technique known as hierarchical clustering that identifies nanomaterials that have similar biological effects across a wide range of assays. This approach enabled the investigators to create strong structure-activity relationships that correlate nanoparticle properties to biological activities.

In the experiments reported in this paper, the investigators tested some 50 different nanomaterials. They used four different cell lines for their assays and measured biological activity at four different nanoparticle doses. The large amount of data generated by this type of extensive analysis enabled the researchers to identify different relationships with a high degree of statistical significance. This analysis clearly showed that there were definite correlations between the physical and chemical properties of a nanoparticle and biological activity. More importantly, the investigators found that the relationships identified using in vitro assays correlated with activity observed when the nanoparticles were administered to test animals.

Taking a similar approach, Nicholas Kotov, Ph.D., of the University of Michigan and Yurii Gun'ko, Ph.D., of Trinity College Dublin, led a team of investigators that developed a series of high-content screening assays for use in testing the cytotoxicity of a large number of quantum dots and gold nanoparticles. These assays, the researchers note, enabled them to distinguish subtle differences in cytotoxicity among similar nanomaterials, which should set the stage for conducting multiparametric analyses on large numbers of particles in a rapid and quantitative manner. The investigators are now working to modify their assay protocols to include biological properties such as transport across the cell membrane.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:


National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Perturbational Profiling of Nanomaterial Biologic Activity.”

View abstract - “High-Content Screening as a Universal Tool for Fingerprinting of Cytotoxicity of Nanoparticles.”

Related News Press

News and information

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Nanomedicine

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Announcements

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tools

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project