Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Mass-Producing Tunable Magnetic Nanoparticles

Abstract:
Taking a cue from the semiconductor industry, a team of investigators at Stanford University has developed a method of producing unlimited quantities of highly magnetic nanoparticles suitable for use as magnetic resonance tumor imaging agents. Equally important, this method can be easily tailored to produce nanoparticles with a wide range of well-defined magnetic properties. Tunability creates the opportunity to use these nanoparticles in multiplexed biosensing applications akin to those now being developed using tunable quantum dots of multiple colors.

Mass-Producing Tunable Magnetic Nanoparticles

Bethesda , MD | Posted on May 21st, 2008

Shan Wang, Ph.D., a member of the Center for Cancer Nanotechnology Excellence Focused on Therapy Response, one of eight Centers of Cancer Nanotechnology Excellence (CCNEs) funded by the NCI, led a research team that has been exploring methods of creating large, uniform batches of magnetic nanoparticles. Their current work, reported in the journal Advanced Materials, describes a technique for fabricating magnetic nanoparticles that involves forming two magnetic layers sandwiched around a layer of nonmagnetic material.

To create these sandwich particles, the investigators use a technique known as nanoimprint lithography to create cobalt-iron nanodisks. As a nonmagnetic spacer, the researchers used nanometer-thick layers of ruthenium. By varying the thickness of the ruthenium spacer layer, the investigators found they could alter the magnetic properties of the resulting nanodisks in a predictable manner. The disks are coated with a thin layer of tantalum to stabilize them.

In addition to producing nanoparticles with tunable magnetic properties, the researchers showed that they could use nanoimprint lithography to add additional layers of materials that afforded the resulting disks with other useful properties. For example, the investigators added a layer of gold onto the tantalum surfaces, creating magnetic nanoparticles that could also be detected using surface plasmon resonance imaging, a sensitive optical imaging technique.

This work, which was supported by the NCI's Alliance for Nanotechnology in Cancer, is detailed in the paper "High-Moment Antiferromagnetic Nanoparticles with Tunable Magnetic Properties." There is no abstract available for this paper, but a citation is available at the journal's Web site.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580


Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View citation

Related News Press

News and information

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Kalam: versatility personified August 1st, 2015

The National Space Society Pays Tribute to Dr. Kalam -- One Of Our Leading Lights Has Joined The Stars August 1st, 2015

Imaging

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Take a trip through the brain July 30th, 2015

Nanomedicine

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Discoveries

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project