Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers identify pressure effects on nanomaterials

Fluorescence from CdSe quantum dot solids in environments varying from stable to high unstable show that small deviations from uniform stress distribution greatly affect the electronic properties. The blue represents cadmium, the yellow represents selenium and the red represents a cloud of electrons in their excited state.
Image by Sebastien Hamel/LLNL
Fluorescence from CdSe quantum dot solids in environments varying from stable to high unstable show that small deviations from uniform stress distribution greatly affect the electronic properties. The blue represents cadmium, the yellow represents selenium and the red represents a cloud of electrons in their excited state. Image by Sebastien Hamel/LLNL

Abstract:
Transistors, lasers and solar-energy conversion devices may be easier to manipulate because of recent research by Lawrence Livermore National Laboratory scientists.

Researchers identify pressure effects on nanomaterials

LIVERMORE, CA | Posted on May 7th, 2008

The researchers defined the role high pressure plays in precisely tuning the fundamental properties of nanomaterials and, in particular, nanoparticle assemblies that are important for device applications.

The team, made up of LLNL scientists Christian Grant, Jonathan Crowhurst, Sebastien Hamel, Natalia Zaitseva and former LLNL researcher Andrew Williamson (now at Physic Ventures), subjected quantum dot solids (in this case assemblies of cadmium selenide, or CdSe, nanocrystals) to very high static pressures on the order of 70,000 atmospheres and studied in-situ their response using a laser-based luminescence technique. A quantum dot is a semiconductor whose electrons are confined in all three spatial dimensions.

"We closely compared our results with theoretical calculations," Grant said. "These results were completely consistent with our experimental observations."

But when they applied nonuniform pressure, the results were quite different.

It led to large shifts in the energy associated with the very strong fluorescence of CdSe. CdSe, it was found, is extremely sensitive to the local stress state.

The typical length of quantum dots, which are anywhere in size from one to several hundred nanometers, have chemical and physical properties that are substantially different from those of their bulk and molecular counterparts. (A nanometer is one-billionth of a meter).

Quantum dots can be close-packed into quantum dot solids (QDSs). These nanomaterials can yield insight not only into particle-particle coupling but also tell a story of the evolution of their electronic properties from individual dots and the collective solid.

The Livermore team measured QDSs in several different pressure media, including a liquid and various solid or glassy but still fairly soft media. In addition, they compressed the material directly. Depending on the medium, they observed a steady increase in energy as a function of pressure (uniform pressure case) or after an initial increase, a flattening or even decrease in energy (non-uniform pressure case).

"High pressure provides insight into the fundamental properties of nanoparticles, which can be drastically different from the corresponding bulk material," Grant said.

For example the structural phase transition that occurs in bulk CdSe occurs at much lower pressures than in the case of the QDSs.

The research appears in the June issue of the journal Small.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
Phone: (925) 422-9799
E-mail:

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Chip Technology

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Discoveries

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Announcements

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Energy

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Quantum Dots/Rods

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Photonics/Optics/Lasers

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project