Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers identify pressure effects on nanomaterials

Fluorescence from CdSe quantum dot solids in environments varying from stable to high unstable show that small deviations from uniform stress distribution greatly affect the electronic properties. The blue represents cadmium, the yellow represents selenium and the red represents a cloud of electrons in their excited state.
Image by Sebastien Hamel/LLNL
Fluorescence from CdSe quantum dot solids in environments varying from stable to high unstable show that small deviations from uniform stress distribution greatly affect the electronic properties. The blue represents cadmium, the yellow represents selenium and the red represents a cloud of electrons in their excited state. Image by Sebastien Hamel/LLNL

Abstract:
Transistors, lasers and solar-energy conversion devices may be easier to manipulate because of recent research by Lawrence Livermore National Laboratory scientists.

Researchers identify pressure effects on nanomaterials

LIVERMORE, CA | Posted on May 7th, 2008

The researchers defined the role high pressure plays in precisely tuning the fundamental properties of nanomaterials and, in particular, nanoparticle assemblies that are important for device applications.

The team, made up of LLNL scientists Christian Grant, Jonathan Crowhurst, Sebastien Hamel, Natalia Zaitseva and former LLNL researcher Andrew Williamson (now at Physic Ventures), subjected quantum dot solids (in this case assemblies of cadmium selenide, or CdSe, nanocrystals) to very high static pressures on the order of 70,000 atmospheres and studied in-situ their response using a laser-based luminescence technique. A quantum dot is a semiconductor whose electrons are confined in all three spatial dimensions.

"We closely compared our results with theoretical calculations," Grant said. "These results were completely consistent with our experimental observations."

But when they applied nonuniform pressure, the results were quite different.

It led to large shifts in the energy associated with the very strong fluorescence of CdSe. CdSe, it was found, is extremely sensitive to the local stress state.

The typical length of quantum dots, which are anywhere in size from one to several hundred nanometers, have chemical and physical properties that are substantially different from those of their bulk and molecular counterparts. (A nanometer is one-billionth of a meter).

Quantum dots can be close-packed into quantum dot solids (QDSs). These nanomaterials can yield insight not only into particle-particle coupling but also tell a story of the evolution of their electronic properties from individual dots and the collective solid.

The Livermore team measured QDSs in several different pressure media, including a liquid and various solid or glassy but still fairly soft media. In addition, they compressed the material directly. Depending on the medium, they observed a steady increase in energy as a function of pressure (uniform pressure case) or after an initial increase, a flattening or even decrease in energy (non-uniform pressure case).

"High pressure provides insight into the fundamental properties of nanoparticles, which can be drastically different from the corresponding bulk material," Grant said.

For example the structural phase transition that occurs in bulk CdSe occurs at much lower pressures than in the case of the QDSs.

The research appears in the June issue of the journal Small.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
Phone: (925) 422-9799
E-mail:

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Energy

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Quantum Dots/Rods

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Photonics/Optics/Lasers

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project