Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Environmental Fate of Nanoparticles Depends on Water Carrying Them

Researchers Kurt Pennell (standing) and Younggang Wang examine glass microbeads and sand used to study the transport and retention of C60 particles in water. (Georgia Tech Photo: Gary Meek)
Researchers Kurt Pennell (standing) and Younggang Wang examine glass microbeads and sand used to study the transport and retention of C60 particles in water. (Georgia Tech Photo: Gary Meek)

Abstract:
The fate of carbon-based nanoparticles spilled into groundwater - and the ability of municipal filtration systems to remove the nanoparticles from drinking water - depend on subtle differences in the solution properties of the water carrying the particles, a new study has found.

Environmental Fate of Nanoparticles Depends on Water Carrying Them

Atlanta, GA | Posted on May 2nd, 2008

In slightly salty water, for example, clusters of Carbon 60 (C60) would tend to adhere tightly to soil or filtration system particles. But where natural organic compounds or chemical surfactants serve as stabilizers in water, the C60 fullerene particles would tend to flow as easily as the water carrying them.

"In some cases, the nanoparticles move very little and you would get complete retention in the soil," said Kurt Pennell, a professor in the School of Civil and Environmental Engineering at the Georgia Institute of Technology. "But in different solution conditions or in the presence of a stabilizing agent, they can travel just like water. The movement of these nanoparticles is very sensitive to the solution conditions."

Research into the transport and retention of C60 nanoparticles was reported April 11 in the online version of the American Chemical Society journal Environmental Science and Technology and will be published later in the print edition. The research was funded by the U.S. Environmental Protection Agency.

Comparatively little research has been done on what happens to nanoparticles when they are released through accidental spills - or when products containing them are discarded. Researchers want to know more about the environmental fate of nanoparticles to avoid creating problems like those of polychlorinated biphenyls (PCBs), in which the harmful effects of the compounds were discovered only after their use became widespread.

"It will be difficult to control the waste stream, so these nanoparticles are likely to get everywhere," said Pennell. "We want to figure out now what will happen to them and how toxic they will be in the environment."

To study the flow and retention of the nanoparticles in simulated soil and filtration systems, Pennell's research team filled glass columns with either glass microbeads or sand, and saturated the columns with water. They then sent a "pulse" of water containing C60 nanoparticles through the columns, followed by additional water containing no nanoparticles.

They measured the quantity of nanoparticles emerging from the columns and analyzed the sand and glass beads to observe the quantity of C60 retained there. They also extracted the contents of the columns to measure the distribution of retained nanoparticles.

"In sand, we saw a uniform distribution of the nanoparticles throughout the column, which suggests that under the circumstances we examined, there is a limited retention capability due to filtration," Pennell explained. "Once that capacity is reached, the particles will pass through until they are retained by other grains of soil or sand."

Traditional theories regarding the activity of such packed-bed filters suggest that particles would build up near the column entrance, with concentrations falling off thereafter. The study findings suggest that the predictions of "filter theory" will have to be modified to explain the transport of nanoparticles in soil, Pennell said.

The nanoparticles retained were tightly bound to the sand or beads and could only be removed by changing the pH of the water.

"That would be a good thing if you were trying to filter these particles from a water system and were worried about them moving into the environment," Pennell said. "Once they go onto the soil system, it's unlikely that they will come off as long as the conditions don't change."

The researchers observed that up to 77 percent of the nanoparticle mass was retained by the sand, while the glass beads retained between 8 and 49 percent. Preparation of the solutions containing C60 dramatically affected the retention; when no salt was added, the particles flowed through the columns like water.

"We want to make a mechanistic assessment of why the particles are attaching," Pennell said. "When we look at real soils with finer particles, we will expect to see more retention."

For municipal drinking water filtration, the sensitivity to solution characteristics means local conditions may play a key role.

"Under most conditions, you should be able to remove nanoparticles from the water," Pennell explained. "But you will have to be careful if the nanoparticles are stabilized by a natural surfactant or humic acid. If those are present in the water, the nanoparticles could go right through."

In a continuation of the work, Pennell and his Georgia Tech collaborators - Joseph Hughes, John Fortner and Younggang Wang - are now studying more complicated transport issues in real soils and with other types of nanoparticles. In field conditions, the nanoparticles are likely to be found with other types of carbon - and potentially with other nanostructures.

"When we study systems with real soil, we will have background interference with humics and other materials," Pennell noted. "Ramping up the complexity will make this research a real challenge."

Ultimately, Pennell hopes to develop information about a broad range of nanoparticles to predict how they'll be retained and transported under a variety of conditions. Facilitating that is mathematical modeling being done by collaborators Linda Abriola and Yusong Li at Tufts University in Medford, Mass.

"We want to build up to the point that we can systematically vary properties and parameters," Pennell explained. "Over time, we should be able to classify nanoparticles based on their properties and have a good idea of how they will behave in the environment."

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 18,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Gerogia 30308 USA

Media Relations Contacts:
John Toon
404-894-6986

or
Abby Vogel
404-385-3364


Technical Contact:
Kurt Pennell
404-894-9365

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project