Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Search for future hydrogen storage materials extends to investigation of hydrogen interactions with metal nanoparticles

Figure 1: A schematic depiction of hydrogen storage of palladium (Pd) and platiunum (Pt) nanoparticles (green, hydrogen; red, Pd; blue Pt).

Reproduced with permission from Ref. 1 © 2008 by the American Chemical Society
Figure 1: A schematic depiction of hydrogen storage of palladium (Pd) and platiunum (Pt) nanoparticles (green, hydrogen; red, Pd; blue Pt).

Reproduced with permission from Ref. 1 © 2008 by the American Chemical Society

Abstract:
The environmental impact of the use of hydrocarbons as fuels has led to a global search for cleaner energy sources. Hydrogen offers a greener alternative for transportation fuels, but a critical issue is the requirement of a safe and reliable hydrogen storage medium. Nanoparticles have advantages over bulk materials for hydrogen storage applications: they have a larger solid/gas interface area and shorter hydrogen diffusion paths, yielding potentially faster kinetics for gas absorption and desorption.

Search for future hydrogen storage materials extends to investigation of hydrogen interactions with metal nanoparticles

Japan | Posted on April 26th, 2008

In two recent communications published in the Journal of the American Chemical Society, Masaki Takata from the SPring-8 Centre, Harima, and his colleagues, including Hiroshi Kitagawa from Kyushu University, explore the hydrogen absorption and desorption behavior of palladium nanoparticles and of palladium core-platinum shell nanoparticles.

In the first communication1, the researchers address whether core-shell nanoparticles made of two metals store hydrogen. The team prepared structures with crystalline palladium cores of 6 nm diameter and crystalline platinum shells of thickness around 2 nm, and then characterized them using a variety of techniques.

Pressure-composition isotherms showed that the core-shell nanoparticles absorbed the same amount of hydrogen as homogenous palladium nanoparticles. Takata, Kitagawa and colleagues then performed solid state nuclear magnetic resonance (NMR) measurements with deuterium, a hydrogen isotope, to identify the absorption site of hydrogen. Surprisingly, they have found that while deuterium was dispersed in both palladium and platinum lattices, it was concentrated in the boundary region between the core and the shell (Fig. 1).

Palladium nanoparticles do not demonstrate complete reversibility in their hydrogen uptake and release, in contrast to their bulk counterparts. Takata, Kitagawa and colleagues explored this hysteresis in their second communication2. Using x-ray diffraction, they have found that the lattice constant of palladium nanoparticles of 6 nm diameter increases with exposure to increased hydrogen pressures. However, on evacuation of the hydrogen, the lattice does not return to its original value; it remains slightly larger.

Then, again using solid state NMR measurements with deuterium, the researchers have found that some deuterium atoms remained within the palladium lattice after evacuation of ‘free' deuterium from the system. They suggest that hydrogen atoms are trapped firmly within the lattice, which expands the crystal lattice, and hence lattice constant, of palladium. This, they say, explains why hydrogen absorption in these materials is not completely reversible.

The researchers conclude that their work provides a new understanding of the interactions between hydrogen and ‘nano-structured' solids, and could contribute to the development of practical hydrogen-storage materials.
Reference

1. Kobayashi, H., Yamauchi, M., Kitagawa, H., Kubota, Y., Kato, K. & Takata, M. Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. Journal of the American Chemical Society 130, 1818-1819 (2008).
2. Kobayashi, H., Yamauchi, M., Kitagawa, H., Kubota, Y., Kato, K. & Takata, M. On the nature of strong hydrogen atom trapping inside Pd nanoparticles. Journal of the American Chemical Society 130, 1828-1829 (2008). | article |

####

About Riken Research
RIKEN is one of Japan’s largest research organisations with institutes and centres in various locations in Japan (see http://www.riken.jp/engn/r-world/link/index.html). RIKEN’s 3000+ researchers publish several hundred research articles in top scientific and technical journals every year across a broad spectrum of disciplines in physics, chemistry, biology, medicine, earth science and in many areas of technology, and the number of articles is growing year on year.

For more information, please click here

Copyright © Riken Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article 1

article 2

Related News Press

News and information

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Discoveries

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Announcements

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Energy

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Fuel Cells

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project