Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Search for future hydrogen storage materials extends to investigation of hydrogen interactions with metal nanoparticles

Figure 1: A schematic depiction of hydrogen storage of palladium (Pd) and platiunum (Pt) nanoparticles (green, hydrogen; red, Pd; blue Pt).

Reproduced with permission from Ref. 1 © 2008 by the American Chemical Society
Figure 1: A schematic depiction of hydrogen storage of palladium (Pd) and platiunum (Pt) nanoparticles (green, hydrogen; red, Pd; blue Pt).

Reproduced with permission from Ref. 1 © 2008 by the American Chemical Society

Abstract:
The environmental impact of the use of hydrocarbons as fuels has led to a global search for cleaner energy sources. Hydrogen offers a greener alternative for transportation fuels, but a critical issue is the requirement of a safe and reliable hydrogen storage medium. Nanoparticles have advantages over bulk materials for hydrogen storage applications: they have a larger solid/gas interface area and shorter hydrogen diffusion paths, yielding potentially faster kinetics for gas absorption and desorption.

Search for future hydrogen storage materials extends to investigation of hydrogen interactions with metal nanoparticles

Japan | Posted on April 26th, 2008

In two recent communications published in the Journal of the American Chemical Society, Masaki Takata from the SPring-8 Centre, Harima, and his colleagues, including Hiroshi Kitagawa from Kyushu University, explore the hydrogen absorption and desorption behavior of palladium nanoparticles and of palladium core-platinum shell nanoparticles.

In the first communication1, the researchers address whether core-shell nanoparticles made of two metals store hydrogen. The team prepared structures with crystalline palladium cores of 6 nm diameter and crystalline platinum shells of thickness around 2 nm, and then characterized them using a variety of techniques.

Pressure-composition isotherms showed that the core-shell nanoparticles absorbed the same amount of hydrogen as homogenous palladium nanoparticles. Takata, Kitagawa and colleagues then performed solid state nuclear magnetic resonance (NMR) measurements with deuterium, a hydrogen isotope, to identify the absorption site of hydrogen. Surprisingly, they have found that while deuterium was dispersed in both palladium and platinum lattices, it was concentrated in the boundary region between the core and the shell (Fig. 1).

Palladium nanoparticles do not demonstrate complete reversibility in their hydrogen uptake and release, in contrast to their bulk counterparts. Takata, Kitagawa and colleagues explored this hysteresis in their second communication2. Using x-ray diffraction, they have found that the lattice constant of palladium nanoparticles of 6 nm diameter increases with exposure to increased hydrogen pressures. However, on evacuation of the hydrogen, the lattice does not return to its original value; it remains slightly larger.

Then, again using solid state NMR measurements with deuterium, the researchers have found that some deuterium atoms remained within the palladium lattice after evacuation of Ďfree' deuterium from the system. They suggest that hydrogen atoms are trapped firmly within the lattice, which expands the crystal lattice, and hence lattice constant, of palladium. This, they say, explains why hydrogen absorption in these materials is not completely reversible.

The researchers conclude that their work provides a new understanding of the interactions between hydrogen and Ďnano-structured' solids, and could contribute to the development of practical hydrogen-storage materials.
Reference

1. Kobayashi, H., Yamauchi, M., Kitagawa, H., Kubota, Y., Kato, K. & Takata, M. Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. Journal of the American Chemical Society 130, 1818-1819 (2008).
2. Kobayashi, H., Yamauchi, M., Kitagawa, H., Kubota, Y., Kato, K. & Takata, M. On the nature of strong hydrogen atom trapping inside Pd nanoparticles. Journal of the American Chemical Society 130, 1828-1829 (2008). | article |

####

About Riken Research
RIKEN is one of Japanís largest research organisations with institutes and centres in various locations in Japan (see http://www.riken.jp/engn/r-world/link/index.html). RIKENís 3000+ researchers publish several hundred research articles in top scientific and technical journals every year across a broad spectrum of disciplines in physics, chemistry, biology, medicine, earth science and in many areas of technology, and the number of articles is growing year on year.

For more information, please click here

Copyright © Riken Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article 1

article 2

Related News Press

News and information

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Discoveries

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Energy

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Fuel Cells

VentureLab nanotechnology startup wins TechConnect Innovation Award June 2nd, 2016

Tiny probe could produce big improvements in batteries and fuel cells: A new method helps scientists get an atom's level understanding of electrochemical properties June 1st, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic