Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > The wonders of mechanical self-replication

April 25th, 2008

The wonders of mechanical self-replication

Abstract:
Most consumer products have a complex history, developing from raw materials to their current state. The stages of manufacturing are often overlooked by the end user, but they invariably involve either particular equipment or a skilled craftsman; in most automated processes, machines are the preferred method. Throughout the assembly line, each of these machines is highly specialized to perform one or two tasks: While one device might rivet two plates together, it cannot weld, glue, or cut as well. If the manufacturing process calls for such operations, they will have to be performed by another machine.

As if it weren't complex enough already, consider the equipment necessary to manufacture these manufacturing machines. The concept quickly develops into a tangled web of raw materials, generalized manufacturing techniques, and specialized assembly line equipment. There is a way to simplify it all, though. The technique seems bizarre to seasoned industrialists, but is strangely familiar to all biological organisms: self-assembly. Researchers have long toyed with proof-of-concept experiments utilizing baseball-size or larger robotic sub-units to arrange themselves into a functioning "organism," but one team of scientists at Purdue University has finally achieved the same feat at the molecular level.

"Autopoiesis" is a term derived from Greek words, which means "self-creation." It can be applied to evolution to describe the process undergone by inorganic molecules to form the building blocks of life. Biologically, it can be used to describe the eukaryotic cell, which produces more of itself through mitosis or meiosis. These are natural occurrences familiar to most of us on at least some level. Alternatively, self-replicating machines pioneered by scientists like John von Neumann can theoretically self-replicate, drawing from local resources to build more machines. These machines have been called clanking replicators, von Neumann machines, and universal constructors. Much of the premise of nanotechnology is based around self-replicating machines. The converse of autopoiesis is allopoiesis; current manufacturing techniques are allopoietic.

Source:
bcheights.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instrumentsí Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Possible Futures

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Molecular Nanotechnology

Using DNA origami to build nanodevices of the future September 1st, 2015

Sandcastles inspire new nanoparticle binding technique August 5th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

Self Assembly

Using DNA origami to build nanodevices of the future September 1st, 2015

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

Novel nanostructures for efficient long-range energy transport August 21st, 2015

Biophysics: Formation of swarms in nanosystems August 18th, 2015

Announcements

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic