Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > The wonders of mechanical self-replication

April 25th, 2008

The wonders of mechanical self-replication

Abstract:
Most consumer products have a complex history, developing from raw materials to their current state. The stages of manufacturing are often overlooked by the end user, but they invariably involve either particular equipment or a skilled craftsman; in most automated processes, machines are the preferred method. Throughout the assembly line, each of these machines is highly specialized to perform one or two tasks: While one device might rivet two plates together, it cannot weld, glue, or cut as well. If the manufacturing process calls for such operations, they will have to be performed by another machine.

As if it weren't complex enough already, consider the equipment necessary to manufacture these manufacturing machines. The concept quickly develops into a tangled web of raw materials, generalized manufacturing techniques, and specialized assembly line equipment. There is a way to simplify it all, though. The technique seems bizarre to seasoned industrialists, but is strangely familiar to all biological organisms: self-assembly. Researchers have long toyed with proof-of-concept experiments utilizing baseball-size or larger robotic sub-units to arrange themselves into a functioning "organism," but one team of scientists at Purdue University has finally achieved the same feat at the molecular level.

"Autopoiesis" is a term derived from Greek words, which means "self-creation." It can be applied to evolution to describe the process undergone by inorganic molecules to form the building blocks of life. Biologically, it can be used to describe the eukaryotic cell, which produces more of itself through mitosis or meiosis. These are natural occurrences familiar to most of us on at least some level. Alternatively, self-replicating machines pioneered by scientists like John von Neumann can theoretically self-replicate, drawing from local resources to build more machines. These machines have been called clanking replicators, von Neumann machines, and universal constructors. Much of the premise of nanotechnology is based around self-replicating machines. The converse of autopoiesis is allopoiesis; current manufacturing techniques are allopoietic.

Source:
bcheights.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Possible Futures

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Molecular Nanotechnology

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

New Book by Nobel Laureate Tells Story of Chemistry’s New Field: Fraser Stoddart explains the mechanical bond and where it is taking scientists November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Self Assembly

Computers made of genetic material? HZDR researchers conduct electricity using DNA-based nanowires November 9th, 2016

First multicellular organism inspires the design of better cancer drugs September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Announcements

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project