Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Finding the reaction rates for a particle-in-a-chip

April 23rd, 2008

Finding the reaction rates for a particle-in-a-chip

Abstract:
How does trapping a nanoparticle in a microdevice affect its reactions? US scientists are answering this question thanks to a straightforward method using fluorescent tags.

Meghan Caulum and Charles Henry at Colorado State University in Fort Collins, US, have developed what they say is 'a simple, inexpensive way to monitor reactions at the surface of magnetic particles within a microfluidic device.' The researchers used their method to look at reaction rates in the system.

Using small magnetic particles in microfluidic systems has great potential in chemical synthesis and biological techniques such as immunoassays, declare Caulum and Henry. But few researchers so far have studied how reaction rates at the particle surfaces differ in microfluidic devices from those in solution. Caulum and Henry say that understanding the processes involved is important when trying to optimise previously solution-based assays on-chip.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Microfluidics/Nanofluidics

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project