Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Printed oxide electronics at Oregon State University

April 22nd, 2008

Printed oxide electronics at Oregon State University

Abstract:
Oregon State University has had a comprehensive program developing printed oxide electronics and electro-optics for some years. The latest progress was revealed by Douglas A. Keszler Department of Chemistry OSUMI Oregon State University at the IDTechEx Printed Electronics Europe event in Dresden Germany this month.

Collaboration and funding comes from Hewlett Packard, Inpria Corp., DARPA, The Air Force Research Laboratory, SNNI and Oregon Nanoscience and Microtechnologies Institute.

One advantage of this technology is transparency and three of the researchers have written a book on Transparent Electronics published by Springer. The electronic properties of inorganic compound layers can be superior to those of organic layers by a factor of ten or more, though the test devices reported here usually have mobilities similar to the best organic semiconductors not yet commercialised ie a few cm2/vs. With inorganic oxide transistor semiconductors and dielectrics, the challenge lies in printing what is, in effect, pottery and the OSU approach does not follow the usual route of creating fine powders in order to do this. So called subcolloidal precursor chemistries are used.

Source:
idtechex.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Chip Technology

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project