Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carnegie Mellon's Nadine Aubry, Colleague Pushpendra Singh Work to Find Method for Improved Self-Assembly of Nanoparticles

Abstract:
Carnegie Mellon University's Nadine Aubry and colleague Pushpendra Singh of the New Jersey Institute of Technology (NJIT) are leading a research team to develop a manufacturing strategy that could improve technologies used in tissue engineering and information technology.

Carnegie Mellon's Nadine Aubry, Colleague Pushpendra Singh Work to Find Method for Improved Self-Assembly of Nanoparticles

PITTSBURGH, PA | Posted on April 7th, 2008

Aubry, head of Carnegie Mellon's Mechanical Engineering Department, and Singh, an engineering professor at NJIT, have developed a new way of herding nano/micro-particles into highly ordered two-dimensional lattices (monolayers) with adjustable spacing between the particles.

The team's research, reported last month in the Proceedings of the National Academy of Sciences USA journal (pnas.org/egi/content/full/105/10/3695), shows how the use of electric fields and fluid- fluid interfaces can be judiciously used to develop new materials with special properties to increase the efficiency of drug delivery patches, solar cells and the next generation of high- performance computing.

"This new manufacturing strategy could revolutionize the way we design two-dimensional nanomaterials with adaptable microscopic structures and desired properties," said Aubry, who was recently named a fellow of the American Association for the Advancement of Science (AAAS) for her outstanding contributions to the field of fluid dynamics.

The research team found they could control the particle distribution, particularly uncharged particles, at a fluid-fluid interface by applying an electric field. Without an electric field, particles self assemble. But they self assemble under capillary action, which make particles attract one another at the free-surface of a liquid. This is the same action we experience when our cereal flakes regroup at the surface of a bowl of milk.

This self-assembly via capillary action has serious flaws. Some of those flaws include an inability to manipulate small-sized particles and adjust the porosity of the resulting material. There are also inherent defects in the particle patterns.

"What is fascinating, is that the presence of an electric field can remedy all these deficiencies," Aubry said. "The key is that when we apply the electric field, we can expand or shrink the lattice, and we can do it dynamically. The explanation is all in the subtle interplay between the forces - both electrostatic and hydrodynamic - acting on the particles."

The research team shows that their new technique creates forces capable of assembling micron-sized particles and theoretically predicts that the method should apply to nanoparticles as well.

"We are extremely excited about the new self-assembly method because it offers flexibility, precision and simplicity," Aubry said.

####

About Carnegie Mellon University
Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business, public policy, fine arts and the humanities. More than 10,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A small student- to-faculty ratio provides an opportunity for close interaction between the students and professors. While technology is pervasive on its 144-acre Pittsburgh campus, Carnegie Mellon is also distinctive among leading research universities for the world-renowned programs in its College of Fine Arts. A global university, Carnegie Mellon has campuses in Silicon Valley, Calif., and Qatar, and programs in Asia, Australia and Europe.

For more information, please click here

Contacts:
Chriss Swaney
CMU Media Relations
412-268-5776

Copyright © Carnegie Mellon University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Nanomedicine

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Announcements

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Advanced Nanomechanical Characterization Centre Open in India: Nanomechanics, Inc. announces the establishment of the joint technology development center in Hyderabad, India July 5th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project