Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carnegie Mellon's Nadine Aubry, Colleague Pushpendra Singh Work to Find Method for Improved Self-Assembly of Nanoparticles

Abstract:
Carnegie Mellon University's Nadine Aubry and colleague Pushpendra Singh of the New Jersey Institute of Technology (NJIT) are leading a research team to develop a manufacturing strategy that could improve technologies used in tissue engineering and information technology.

Carnegie Mellon's Nadine Aubry, Colleague Pushpendra Singh Work to Find Method for Improved Self-Assembly of Nanoparticles

PITTSBURGH, PA | Posted on April 7th, 2008

Aubry, head of Carnegie Mellon's Mechanical Engineering Department, and Singh, an engineering professor at NJIT, have developed a new way of herding nano/micro-particles into highly ordered two-dimensional lattices (monolayers) with adjustable spacing between the particles.

The team's research, reported last month in the Proceedings of the National Academy of Sciences USA journal (pnas.org/egi/content/full/105/10/3695), shows how the use of electric fields and fluid- fluid interfaces can be judiciously used to develop new materials with special properties to increase the efficiency of drug delivery patches, solar cells and the next generation of high- performance computing.

"This new manufacturing strategy could revolutionize the way we design two-dimensional nanomaterials with adaptable microscopic structures and desired properties," said Aubry, who was recently named a fellow of the American Association for the Advancement of Science (AAAS) for her outstanding contributions to the field of fluid dynamics.

The research team found they could control the particle distribution, particularly uncharged particles, at a fluid-fluid interface by applying an electric field. Without an electric field, particles self assemble. But they self assemble under capillary action, which make particles attract one another at the free-surface of a liquid. This is the same action we experience when our cereal flakes regroup at the surface of a bowl of milk.

This self-assembly via capillary action has serious flaws. Some of those flaws include an inability to manipulate small-sized particles and adjust the porosity of the resulting material. There are also inherent defects in the particle patterns.

"What is fascinating, is that the presence of an electric field can remedy all these deficiencies," Aubry said. "The key is that when we apply the electric field, we can expand or shrink the lattice, and we can do it dynamically. The explanation is all in the subtle interplay between the forces - both electrostatic and hydrodynamic - acting on the particles."

The research team shows that their new technique creates forces capable of assembling micron-sized particles and theoretically predicts that the method should apply to nanoparticles as well.

"We are extremely excited about the new self-assembly method because it offers flexibility, precision and simplicity," Aubry said.

####

About Carnegie Mellon University
Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business, public policy, fine arts and the humanities. More than 10,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A small student- to-faculty ratio provides an opportunity for close interaction between the students and professors. While technology is pervasive on its 144-acre Pittsburgh campus, Carnegie Mellon is also distinctive among leading research universities for the world-renowned programs in its College of Fine Arts. A global university, Carnegie Mellon has campuses in Silicon Valley, Calif., and Qatar, and programs in Asia, Australia and Europe.

For more information, please click here

Contacts:
Chriss Swaney
CMU Media Relations
412-268-5776

Copyright © Carnegie Mellon University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Nanomedicine

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Silvaco, Purdue team up to bring scalable atomistic TCAD solutions for next generation semiconductor devices and materials August 24th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Research partnerships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project