Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Self-assembly, science of the future

April 7th, 2008

Self-assembly, science of the future

Abstract:
In 2007, Dr Babak Amir Parviz was chosen by the MIT Technology as one of the top innovators under the age of 35, for developing the self-assembly manufacturing method.

The Genome Technology Magazine selected him as a star young genomics investigator. He has also received the National Science Foundation CAREER Award.

In his last year of high school, Amir Parviz won the Kharazmi award for designing a single-engine airplane along with Reza Amirkhani and Amir Hossein Samakar.

The same year, he won a bronze medal from the 22nd international physics Olympiad.

Dr Amir Parviz holds a BA in English Literature from the University of Washington, a BS in Electronics Engineering from the Sharif University of Technology, an MS in Electrical Engineering and Physics as well as a PhD in Electrical Engineering from University of Michigan, and a Postdoctoral training degree in Chemistry and Chemical Biology from Harvard.

He is currently a faculty member at the Electrical Engineering Department of the University of Washington (UW) and the Associate Director of the Micro-scale Life Sciences Center at UW.

Q. Can you explain self assembly for us?

A. Self-assembly is a fundamentally and radically different way to make structures. If we look at the more conventional engineering, for example in building a car, what is done is that all the parts of the final product are made and then they are assembled (by a human or a robot) to make the final structure of the automobile.

Although this process is the most widely used one today to make engineered structures, this is not the way nature makes things. In nature, the "parts" of a final system find each other and bind on their own to form a plant, an insect etc. In nature structures 'self-assemble'.

Our group works on developing methods that would allow us to use self-assembly for building various things. For example, we have deployed a number of self-assembly techniques to build a range of functional devices from nano-scale optical waveguide to flexible circuits.

Q. Tell us more about the sciences and project which will benefit from self assembly?

A. Self-assembly is a widely applicable approach to making things. My guess is that in principle it is possible to improve the current state-of-the-art in manufacturing by orders of magnitude in terms of the minimum part size, the maximum part count, and the available material diversity if self-assembly is used.

Source:
presstv.ir

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineers develop new materials for hydrogen storage April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Self Assembly

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Cypress’s TrueTouch® Touchscreen Controllers Compatible with Cima NanoTech’s SANTE® Silver Nanoparticle-Based Touch Sensors: Supporting Designs for Advanced Touch Applications March 5th, 2014

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes March 1st, 2014

A potentially revolutionnary material: Scientists produce a novel form of artificial graphene February 15th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE