Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Promising New Nanotechnology for Spinal Cord Injury

John Kessler / photo by David Joel
John Kessler / photo by David Joel

Abstract:
A spinal cord injury often leads to permanent paralysis and loss of sensation below the site of the injury because the damaged nerve fibers can't regenerate. The nerve fibers or axons have the capacity to grow again, but don't because they're blocked by scar tissue that develops around the injury.

Promising New Nanotechnology for Spinal Cord Injury

EVANSTON, IL | Posted on April 2nd, 2008

Northwestern University researchers have shown that a nano-engineered gel inhibits the formation of scar tissue at the injury site and enables the severed spinal cord fibers to regenerate and grow. The gel is injected as a liquid into the spinal cord and self -assembles into a scaffold that supports the new nerve fibers as they grow up and down the spinal cord, penetrating the site of the injury.

When the gel was injected into mice with a spinal cord injury, after six weeks the animals had a greatly enhanced ability to use their hind legs and walk.

The research is published today in the April 2 issue of the Journal of Neuroscience.

"We are very excited about this," said lead author John Kessler, M.D., Davee Professor of Stem Cell Biology at Northwestern University's Feinberg School of Medicine. "We can inject this without damaging the tissue. It has great potential for treating human beings."

Kessler stressed caution, however, in interpreting the results. "It's important to understand that something that works in mice will not necessarily work in human beings. At this point in time we have no information about whether this would work in human beings."

"There is no magic bullet or one single thing that solves the spinal cord injury, but this gives us a brand new technology to be able to think about treating this disorder," said Kessler, also the chair of the Davee Department of Neurology at the Feinberg School. "It could be used in combination with other technologies including stem cells, drugs or other kinds of interventions."

"We designed our self-assembling nanostructures -- the building blocks of the gel -- to promote neuron growth," said co-author Samuel I. Stupp, Board of Trustees Professor of Materials Science and Engineering, Chemistry, and Medicine and director of Northwestern's Institute for BioNanotechnology in Medicine. "To actually see the regeneration of axons in the spinal cord after injury is a fascinating outcome."

The nano-engineered gel works in several ways to support the regeneration of spinal cord nerve fibers. In addition to reducing the formation of scar tissue, it also instructs the stem cells --which would normally form scar tissue -- to instead to produce a helpful new cell that makes myelin. Myelin is a substance that sheaths the axons of the spinal cord to permit the rapid transmission of nerve impulses.

The gel's scaffolding also supports the growth of the axons in two critical directions -- up the spinal cord to the brain (the sensory axons) and down to the legs (the motor axons.) "Not everybody realizes you have to grow the fibers up the spinal cord so you can feel where the floor is. If you can't feel where the floor is with your feet, you can't walk," Kessler said.

Now Northwestern researchers are working on developing the nano-engineered gel to be acceptable as a pharmaceutical for the Food and Drug Administration.

If the gel is approved for humans, a clinical trial could begin in several years.

"It's a long way from helping a rodent to walk again and helping a human being walk again," Kessler stressed again. "People should never lose sight of that. But this is still exciting because it gives us a new technology for treating spinal cord injury."

####

About Northwestern University
Research thrives at Northwestern University, with an annual budget of over $1.5 billion and more than $416 million in sponsored research. At Northwestern, and often with partners at Argonne National Laboratory, Fermilab, and local universities, interdisciplinary teams work to solve society's problems and facilitate clinical and commercial use of their innovations.

For more information, please click here

Contacts:
Marla Paul
312-503-8928

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project