Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Promising New Nanotechnology for Spinal Cord Injury

John Kessler / photo by David Joel
John Kessler / photo by David Joel

Abstract:
A spinal cord injury often leads to permanent paralysis and loss of sensation below the site of the injury because the damaged nerve fibers can't regenerate. The nerve fibers or axons have the capacity to grow again, but don't because they're blocked by scar tissue that develops around the injury.

Promising New Nanotechnology for Spinal Cord Injury

EVANSTON, IL | Posted on April 2nd, 2008

Northwestern University researchers have shown that a nano-engineered gel inhibits the formation of scar tissue at the injury site and enables the severed spinal cord fibers to regenerate and grow. The gel is injected as a liquid into the spinal cord and self -assembles into a scaffold that supports the new nerve fibers as they grow up and down the spinal cord, penetrating the site of the injury.

When the gel was injected into mice with a spinal cord injury, after six weeks the animals had a greatly enhanced ability to use their hind legs and walk.

The research is published today in the April 2 issue of the Journal of Neuroscience.

"We are very excited about this," said lead author John Kessler, M.D., Davee Professor of Stem Cell Biology at Northwestern University's Feinberg School of Medicine. "We can inject this without damaging the tissue. It has great potential for treating human beings."

Kessler stressed caution, however, in interpreting the results. "It's important to understand that something that works in mice will not necessarily work in human beings. At this point in time we have no information about whether this would work in human beings."

"There is no magic bullet or one single thing that solves the spinal cord injury, but this gives us a brand new technology to be able to think about treating this disorder," said Kessler, also the chair of the Davee Department of Neurology at the Feinberg School. "It could be used in combination with other technologies including stem cells, drugs or other kinds of interventions."

"We designed our self-assembling nanostructures -- the building blocks of the gel -- to promote neuron growth," said co-author Samuel I. Stupp, Board of Trustees Professor of Materials Science and Engineering, Chemistry, and Medicine and director of Northwestern's Institute for BioNanotechnology in Medicine. "To actually see the regeneration of axons in the spinal cord after injury is a fascinating outcome."

The nano-engineered gel works in several ways to support the regeneration of spinal cord nerve fibers. In addition to reducing the formation of scar tissue, it also instructs the stem cells --which would normally form scar tissue -- to instead to produce a helpful new cell that makes myelin. Myelin is a substance that sheaths the axons of the spinal cord to permit the rapid transmission of nerve impulses.

The gel's scaffolding also supports the growth of the axons in two critical directions -- up the spinal cord to the brain (the sensory axons) and down to the legs (the motor axons.) "Not everybody realizes you have to grow the fibers up the spinal cord so you can feel where the floor is. If you can't feel where the floor is with your feet, you can't walk," Kessler said.

Now Northwestern researchers are working on developing the nano-engineered gel to be acceptable as a pharmaceutical for the Food and Drug Administration.

If the gel is approved for humans, a clinical trial could begin in several years.

"It's a long way from helping a rodent to walk again and helping a human being walk again," Kessler stressed again. "People should never lose sight of that. But this is still exciting because it gives us a new technology for treating spinal cord injury."

####

About Northwestern University
Research thrives at Northwestern University, with an annual budget of over $1.5 billion and more than $416 million in sponsored research. At Northwestern, and often with partners at Argonne National Laboratory, Fermilab, and local universities, interdisciplinary teams work to solve society's problems and facilitate clinical and commercial use of their innovations.

For more information, please click here

Contacts:
Marla Paul
312-503-8928

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Self Assembly

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

Nanomedicine

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE