Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Identifying bacteria with gold-nanoparticle constructs

March 27th, 2008

Identifying bacteria with gold-nanoparticle constructs

Abstract:
Bacteria cause millions to suffer from a variety of infections every year. Current methods of identifying bacteria require expensive equipment or a great deal of time—the most common method for identifying bacteria, plating and culturing, requires at least 24 hours. A quicker method of identifying harmful bacteria would be beneficial to many fields, including medical diagnosis and food inspection.

Chemists have devised a sensor array to identify bacteria by fluorescence. The general design involves associating a negatively charged conjugated polymer with positively charged chemicals on the surface of a gold nanoparticle. The negatively charged conjugated polymer is fluorescent on its own but, when it's associated with the nanoparticle, the fluorescence is quenched. Bacteria, which have negatively charged surfaces, can dissociate the conjugated polymer. Once the conjugated polymer has been freed, the fluorescence is restored. Different bacteria species may or may not trigger this reaction depending on the type of chemicals used on the surface of the gold nanoparticle.

Source:
arstechnica.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Nanomedicine

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Silver Replaced with Copper Nanoparticles to Produce Antibacterial Fabrics August 25th, 2014

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

Discoveries

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Announcements

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE