Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nextreme Awarded Seminal Patent in Nanotechnology to Boost Efficiency of Thermoelectrics

Abstract:
Nextreme Awarded US Patent for "Phonon-Blocking, Electron-Transmitting Low-Dimensional Structures" - a Technology That Enhances Cooling and Energy Conversion Efficiency

Nextreme Awarded Seminal Patent in Nanotechnology to Boost Efficiency of Thermoelectrics

DURHAM, NC | Posted on March 27th, 2008

Nextreme Thermal Solutions™, the leader in microscale thermal and power management products for the electronics industry, announces that it has been awarded US Patent 7,342,169 for "Phonon-Blocking, Electron-Transmitting Low-Dimensional Structures" technology that has the potential to significantly impact energy conservation and thermal management - two major drivers in the world economy today. Nextreme's newest patent represents the culmination of pioneering work carried out by RTI International more than seven years ago in the area of nano-structured thermoelectric materials. Nextreme acquired all of RTI's intellectual property in thermoelectric materials and devices in 2004.

Thermoelectrics are used to convert waste heat into electrical power, and also for cooling electronics. Numerous researchers in North America have reported significantly enhanced efficiencies in thermoelectrics using nano-structured materials. This includes pioneering work on superlattices at RTI International and MIT that started in the 1990's and more recently at MIT and Boston College using nano-particles.

The nano-approach uses a commonly available thermoelectric material called Bismuth Telluride, constructed on a nanoscale to create an assembly that researchers believe blocks the transmission of phonons, which carry heat, and enhances the transmission of electrons, which carry electrical energy. The result is a radical boost in material efficiency with reports of 40% to 140% improvement.

"This patent award is the culmination of years of research from a pioneer in the field of thermoelectrics," said Dr. Seri Lee, Chief Technology Officer at Nextreme. "Nano-structured materials hold great promise for significantly enhanced cooling and energy conversion performance."

Nextreme has already revolutionized the use of thin-film thermoelectrics in the electronics industry by integrating thermoelectric materials into commonly used electrical interconnects called copper pillar bumps to create a thermal bump. This approach has provided a scalable and inexpensive pathway for integrating thermal management functionality directly into electronic packaging and has enabled Nextreme's OptoCooler™ module, the world's smallest thermoelectric cooler and the industry's first device to offer a heat pumping density in excess of 70 W/cm2.

For more information, contact Nextreme at 3908 Patriot Dr., Suite 140, Durham, NC 27703-8031; call (919)-597-7300; e-mail or go to www.nextreme.com.

####

About Nextreme Thermal Solutions, Inc.
Nextreme designs and manufactures microscale thermal and power management products for the semiconductor, photonics, consumer, automotive and defense/aerospace industries. The company has embedded cooling, temperature control and power generation capabilities into the widely accepted copper pillar bumping process used in high-volume electronic packaging. Nextreme’s breakthrough addresses the most challenging thermal and power management constraints in electronics today, and delivers the only fully-scalable technology solution by leveraging the existing, high-volume flip chip manufacturing infrastructure. By minimizing the need for manufacturing changes and focusing on developing a seamless design-in solution, Nextreme will change the future of thermal and power management for the entire electronics industry.

Nextreme is managed by an experienced start-up team and world-renowned experts in electronic packaging, thermal management and pillar bump technology. The company has 38 employees and is based in Research Triangle Park, North Carolina.

For more information, please click here

Contacts:
Nextreme, Inc.
Karl von Gunten
919-597-7348

or
BtB Marketing Communications
Garth Miller
919-872-8172

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Chip Technology

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Announcements

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Patents/IP/Tech Transfer/Licensing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Smarter window materials can control light and energy July 22nd, 2015

Magnetic nanoparticles could be key to effective immunotherapy: New method moves promising strategy closer to clinical use July 15th, 2015

Automotive/Transportation

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

Nanocomposites Improve Tire Properties July 9th, 2015

Aerospace/Space

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Global Aerospace Applications Nanocoatings Industry 2015: Acute Market Reports July 21st, 2015

NASA-Funded Study Reduces Cost of Human Missions to Moon and Mars by Factor of Ten July 20th, 2015

University of Puerto Rico and NASA in the news – XEI reports July 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project