Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Drafting Plans for Tiny Assembly Lines

Robert Wallace         Yves Chabal
Robert Wallace Yves Chabal

Abstract:
$15 Million Project Designed to Enable Atomically Precise Manufacturing

Researchers Drafting Plans for Tiny Assembly Lines

Dallas, TX | Posted on March 26th, 2008

A University of Texas at Dallas team will play a key role in a new $15 million research project designed to enable manufacturing at an almost unimaginably small scale: one atom at a time.

"This breakthrough technology will make it possible to manufacture devices with atomic precision by exploiting our established ability to remove individual hydrogen atoms from a silicon surface using a scanning tunneling microscope," said Robert Wallace, a professor of materials science and engineering in the Erik Jonsson School of Engineering and Computer Science at UT Dallas and a co-principal investigator in the project.

Known as atomically precise manufacturing, the technique is expected to enable a wide variety of devices and products, including:

* Ultra-low-power semiconductors for cellphones and other wireless communications.
* Sensors with ultra-high sensitivity.
* Data encryption orders of magnitude more secure than existing technology.
* Optical elements that enable unprecedented performance in computing and communications.
* Customized surfaces that would have an array of applications in the biomedical and pharmaceutical industries.
* Nanoscale genomics arrays that would enable a person's complete genetic sequence to be read in less than two hours.

Futuristic technologies such as atomically precise manufacturing are a good example of the initiatives that are part of the University's Strategic Plan. Plans are for more investments in "tomorrow's inventions," especially in the natural sciences, medical sciences and engineering, all areas of great opportunity and impact.

The UT Dallas team will focus its research on perfecting the ability to precisely control the reactions that take place on a silicon surface as the atom-by-atom assembly of a device takes place, said Wallace, who has joint appointments in the electrical engineering and physics departments at UT Dallas. The research will take place in state-of-the-art facilities located in the university's $85 million Natural Science and Engineering Research Laboratory building, which opened just over a year ago.

Funded for $1.8 million over the next four-and-a-half years, the UT Dallas team also includes Yves Chabal, head of the Jonsson School's new Materials Science and Engineering Department and holder of the Texas Instruments Distinguished University Chair in Nanoelectronics, and K.J. Cho, an associate professor of materials science and engineering and physics.

The project is part of the Atomically Precise Manufacturing Consortium led by Zyvex Labs LLC, a molecular nanotechnology company based in Richardson, Texas. The project includes a mixture of funding from the Defense Advanced Research Projects Agency, the Texas Emerging Technology Fund and cost sharing from the team members.

"Increasing the precision of manufacturing has driven both technology and science for the past couple of centuries and what we are doing is just an extension of that drive," said John Randall, vice president of Zyvex Labs, the prime contractor for the research project. "What is revolutionary is having digital control over where we add atoms to a robust solid material. The unique expertise of Professors, Wallace, Chabal and Cho will be key to our success in this program."

In addition to UT Dallas and Zyvex, the research team includes the University of Illinois at Urbana-Champaign, the University of North Texas, the University of Central Florida, the University of Texas at Austin, the National Institute of Standards and Technology, General Dynamics, Molecular Imprints Inc. and Integrated Circuit Scanning Probe Instruments.

####

About Jonsson School - University of Texas at Dallas
With more than 2,600 students, nearly 100 faculty and over $27 million in research funding, the Erik Jonsson School of Engineering and Computer Science at UT Dallas is in the midst of a $300 million public-private initiative that includes the recent completion of a 192,000-square-foot interdisciplinary research building. Named after Texas Instruments co-founder J. Erik Jonsson, the school awards degrees in electrical engineering, computer science, telecommunications engineering, computer engineering, software engineering, and materials science and engineering.

For more information, please click here

Contacts:
David Moore
UT Dallas
(972) 883-4183


Office of Media Relations
UT Dallas
(972) 883-2155

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Molecular Nanotechnology

Nanotech scientists create world's smallest origami bird March 17th, 2021

Light-controlled nanomachine controls catalysis: A molecular motor enables the speed of chemical processes to be controlled using light impulses November 23rd, 2020

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

DNA origami to scale-up molecular motors June 13th, 2019

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Research partnerships

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

New molecular device has unprecedented reconfigurability reminiscent of brain plasticity: Device can be reconfigured multiple times simply by changing applied voltage September 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project