Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New nanoparticle catalyst brings fuel-cell cars closer to showroom

UW-Madison and University of Maryland researchers developed a new type of catalyst by surrounding a nanoparticle of ruthenium with one to two layers of platinum atoms. The result is a robust room-temperature catalyst that dramatically improves a key hydrogen purification reaction and leaves more hydrogen available to make energy in the fuel cell.
UW-Madison and University of Maryland researchers developed a new type of catalyst by surrounding a nanoparticle of ruthenium with one to two layers of platinum atoms. The result is a robust room-temperature catalyst that dramatically improves a key hydrogen purification reaction and leaves more hydrogen available to make energy in the fuel cell.

Abstract:
A University of Wisconsin-Madison and University of Maryland (UM) team has developed a new nanotechnology-driven chemical catalyst that paves the way for more efficient hydrogen fuel-cell vehicles.

New nanoparticle catalyst brings fuel-cell cars closer to showroom

Madison, WI | Posted on March 19th, 2008

Writing in this week's Advance Online Publication of Nature Materials, UW-Madison chemical and biological engineering Professor Manos Mavrikakis and UM chemistry and biochemistry Professor Bryan Eichhorn describe a new type of catalyst created by surrounding a nanoparticle of ruthenium (Ru) with one to two layers of platinum (Pt) atoms. The result is a robust room-temperature catalyst that dramatically improves a key hydrogen purification reaction and leaves more hydrogen available to make energy in the fuel cell.

One day, it could be common for fuel cells to create electricity by consuming hydrogen generated from renewable resources. For now, most of the world's hydrogen supply is derived from fossil fuels in a process called reforming.

An important step in this multistage process, called preferential oxidation of CO in the presence of hydrogen (PROX), uses a catalyst to purge hydrogen of carbon monoxide (CO) before it enters the fuel cell. CO presents a major obstacle to the practical application of fuel cells because it poisons the expensive platinum catalyst that runs the fuel cell reaction.

Attractive for transportation applications and as a battery replacement, proton exchange membrane fuel cells generate electricity using porous carbon electrodes containing a platinum catalyst separated by a solid polymer. Hydrogen fuel enters one side of the cell and oxygen enters on the opposite side. Platinum facilitates the production of protons from molecular hydrogen, and these protons cross the membrane to react with oxygen on the other side. The result is electricity with water and heat as byproducts.

A conventionally constructed catalyst combining ruthenium and platinum must be heated to 70 degrees Celsius or 158 degrees Fahrenheit in order to drive the PROX reaction, but the same elements combined as core-shell nanoparticles operate at room temperature. The lower the temperature at which catalyst activates the reactants and makes the products, the more energy is saved.

"We understand why it works," Mavrikakis says. "We know now the reason behind this marvelous behavior. The first reason is the core-cell nanostructure. This polymer-based method developed by my colleagues in Maryland allows the exact amount of an element, in this case platinum, to be placed exactly where you want it to be on specific seeds of ruthenium."

This very specific nano-architecture and composition can sustain significantly less CO on its surface than pure Pt would. Because the binding is weaker, Mavrikakis says fewer sites on the core-cell nanostructure are available to bind with CO than would occur with Pt alone. That leaves empty sites for oxygen to come in and react.

"The second reason is that there is a completely new reaction mechanism that makes this work so well," he says. "We call it hydrogen-assisted CO oxidation. It uses atomic hydrogen to attack molecular oxygen and make a hydroperoxy intermediate, which in turn, easily produces atomic oxygen. Then, atomic oxygen selectively attacks CO to produce CO2, leaving much more molecular hydrogen free to be fed to the fuel cell than pure Pt does."

While the breakthrough is important to the development of fuel-cell technology, the researchers say it's even more significant to catalysis in general.

First, the team, including graduate students Anand Nilekar of UW-Madison and Selim Alayoglu of Maryland, used theory rather than an experimental approach to zero in on ruthenium/platinum as the ideal core shell system.

Second, the nanoscale fabrication of ruthenium and platinum resulted in a different nano-architecture than when ruthenium and platinum are combined in bulk. For the field of catalysis, the pairing of these approaches could bridge the gap between surface science and catalysis opening new paths to novel and more energy-efficient materials discovery for a variety of industrially important chemical processes.

####

For more information, please click here

Contacts:
Terry Devitt
science
(608) 262-8282

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Discoveries

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Energy

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Automotive/Transportation

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Penn and UC Merced researchers match physical and virtual atomic friction experiments May 8th, 2015

Fuel Cells

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Expanding the reach of metallic glass April 22nd, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project