Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New nanoparticle catalyst brings fuel-cell cars closer to showroom

UW-Madison and University of Maryland researchers developed a new type of catalyst by surrounding a nanoparticle of ruthenium with one to two layers of platinum atoms. The result is a robust room-temperature catalyst that dramatically improves a key hydrogen purification reaction and leaves more hydrogen available to make energy in the fuel cell.
UW-Madison and University of Maryland researchers developed a new type of catalyst by surrounding a nanoparticle of ruthenium with one to two layers of platinum atoms. The result is a robust room-temperature catalyst that dramatically improves a key hydrogen purification reaction and leaves more hydrogen available to make energy in the fuel cell.

Abstract:
A University of Wisconsin-Madison and University of Maryland (UM) team has developed a new nanotechnology-driven chemical catalyst that paves the way for more efficient hydrogen fuel-cell vehicles.

New nanoparticle catalyst brings fuel-cell cars closer to showroom

Madison, WI | Posted on March 19th, 2008

Writing in this week's Advance Online Publication of Nature Materials, UW-Madison chemical and biological engineering Professor Manos Mavrikakis and UM chemistry and biochemistry Professor Bryan Eichhorn describe a new type of catalyst created by surrounding a nanoparticle of ruthenium (Ru) with one to two layers of platinum (Pt) atoms. The result is a robust room-temperature catalyst that dramatically improves a key hydrogen purification reaction and leaves more hydrogen available to make energy in the fuel cell.

One day, it could be common for fuel cells to create electricity by consuming hydrogen generated from renewable resources. For now, most of the world's hydrogen supply is derived from fossil fuels in a process called reforming.

An important step in this multistage process, called preferential oxidation of CO in the presence of hydrogen (PROX), uses a catalyst to purge hydrogen of carbon monoxide (CO) before it enters the fuel cell. CO presents a major obstacle to the practical application of fuel cells because it poisons the expensive platinum catalyst that runs the fuel cell reaction.

Attractive for transportation applications and as a battery replacement, proton exchange membrane fuel cells generate electricity using porous carbon electrodes containing a platinum catalyst separated by a solid polymer. Hydrogen fuel enters one side of the cell and oxygen enters on the opposite side. Platinum facilitates the production of protons from molecular hydrogen, and these protons cross the membrane to react with oxygen on the other side. The result is electricity with water and heat as byproducts.

A conventionally constructed catalyst combining ruthenium and platinum must be heated to 70 degrees Celsius or 158 degrees Fahrenheit in order to drive the PROX reaction, but the same elements combined as core-shell nanoparticles operate at room temperature. The lower the temperature at which catalyst activates the reactants and makes the products, the more energy is saved.

"We understand why it works," Mavrikakis says. "We know now the reason behind this marvelous behavior. The first reason is the core-cell nanostructure. This polymer-based method developed by my colleagues in Maryland allows the exact amount of an element, in this case platinum, to be placed exactly where you want it to be on specific seeds of ruthenium."

This very specific nano-architecture and composition can sustain significantly less CO on its surface than pure Pt would. Because the binding is weaker, Mavrikakis says fewer sites on the core-cell nanostructure are available to bind with CO than would occur with Pt alone. That leaves empty sites for oxygen to come in and react.

"The second reason is that there is a completely new reaction mechanism that makes this work so well," he says. "We call it hydrogen-assisted CO oxidation. It uses atomic hydrogen to attack molecular oxygen and make a hydroperoxy intermediate, which in turn, easily produces atomic oxygen. Then, atomic oxygen selectively attacks CO to produce CO2, leaving much more molecular hydrogen free to be fed to the fuel cell than pure Pt does."

While the breakthrough is important to the development of fuel-cell technology, the researchers say it's even more significant to catalysis in general.

First, the team, including graduate students Anand Nilekar of UW-Madison and Selim Alayoglu of Maryland, used theory rather than an experimental approach to zero in on ruthenium/platinum as the ideal core shell system.

Second, the nanoscale fabrication of ruthenium and platinum resulted in a different nano-architecture than when ruthenium and platinum are combined in bulk. For the field of catalysis, the pairing of these approaches could bridge the gap between surface science and catalysis opening new paths to novel and more energy-efficient materials discovery for a variety of industrially important chemical processes.

####

For more information, please click here

Contacts:
Terry Devitt
science
(608) 262-8282

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Energy

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Automotive/Transportation

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

OCSiAl Builds Worldwide Partnership Network November 12th, 2014

NEI Development Update on NANOMYTE® TC-5001, a Protective Coating for Zinc-Plated and Galvanized Steel November 8th, 2014

ORNL thermomagnetic processing method provides path to new materials November 6th, 2014

Fuel Cells

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Researchers Pump Up Oil Accumulation in Plant Leaves: Method could greatly boost energy content of crops grown for fuel October 8th, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE