Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fake diamonds help jet engines take the heat

Natin Padture
Natin Padture

Abstract:
Ohio State University engineers are developing a technology to coat jet engine turbine blades with zirconium dioxide -- commonly called zirconia, the stuff of synthetic diamonds -- to combat high-temperature corrosion.

Fake diamonds help jet engines take the heat

COLUMBUS, OH | Posted on March 17th, 2008

The zirconia chemically converts sand and other corrosive particles that build up on the blade into a new, protective outer coating. In effect, the surface of the engine blade constantly renews itself.

Ultimately, the technology could enable manufacturers to use new kinds of heat-resistant materials in engine blades, so that engines will be able to run hotter and more efficiently.

Nitin Padture, professor of materials science and engineering at Ohio State, said that he had military aircraft in mind when he began the project. He was then a professor at the University of Connecticut.

"In the desert, sand is sucked into the engines during takeoffs and landings, and then you have dust storms," he said. "But even commercial aircraft and power turbines encounter small bits of sand or other particles, and those particles damage turbine blades."

Jet engines operate at thousands of degrees Fahrenheit, and blades in the most advanced engines are coated with a thin layer of temperature-resistant, thermally-insulating ceramic to protect the metal blades. The coating -- referred to as a thermal-barrier coating -- is designed like an accordion to expand and contract with the metal.

The problem: When sand hits the hot engine blade it melts -- and becomes glass.

"Molten glass is one of the nastiest substances around. It will dissolve anything," Padture said.

The hot glass chews into the ceramic coating. But the real damage happens after the engine cools, and the glass solidifies into an inflexible glaze on top of the ceramic. When the engine heats up again and the metal blades expand, the ceramic coating can't expand, because the glaze has locked it in place. The ceramic breaks off, shortening the life of the engine blades.

In a recent issue of the journal Acta Materialia, Padture and his colleagues described how the new coating forces the glass to absorb chemicals that will convert it into a harmless -- and even helpful -- ceramic.
The problem: When sand hits the hot engine blade it melts -- and becomes glass. "Molten glass is one of the nastiest substances around. It will dissolve anything," Padture said.

The key, Padture said, is that the coating contains aluminum and titanium atoms hidden inside zirconia crystals. When the glass consumes the zirconia, it also consumes the aluminum and titanium. Once the glass accumulates enough of these elements, it changes from a molten material into a stable crystal, and it stops eating the ceramic.

"The glass literally becomes a new ceramic coating on top of the old one. Then, when new glass comes in, the same thing will happen again. It's like it's constantly renewing the coating on the surface of the turbine," Padture said.

Padture's former university has applied for a patent on the technique that he devised for embedding the aluminum and titanium into the zirconia. He's partnering with Inframat Corp., a nanotechnology company in Connecticut, to further develop the technology.

Padture stressed that the technology is in its infancy. He has yet to apply the coatings to complex shapes, and cost is a barrier as well: the process is energy-consuming.

But if that cost eventually came down and the technology matured, the payoff could be hotter engines that burn fuel more efficiently and create less pollution. Manufacturers would be able to use more sophisticated ceramics that boost the heat-resistance of engines. Eventually, technology could go beyond aircraft and power-generator turbines and extend to automobiles as well, Padture said.

His coauthors on the Acta Materialia paper included Ohio State doctoral student Aysegul Aygun, who is doing this work for her dissertation; former postdoctoral researcher Alexander Vasiliev, who is now at the Russian Academy of Sciences; and Xinqing Ma, a scientist at Inframat Corp.

This research was funded by the Office of Naval Research and Naval Air Systems Command.

####

For more information, please click here

Contacts:
Nitin Padture
(614) 247-8114


Written by:
Pam Frost Gorder
(614) 292-9475

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Discoveries

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Materials/Metamaterials

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Patents/IP/Tech Transfer/Licensing

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Military

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Aerospace/Space

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

National Space Society Supports VP Pence's Call for Constant Low-Earth Orbit Human Presence Leading to the Settlement of Space July 13th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project