Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Using a nano light source to investigate small-scale composite materials

Figure 1.(top) Schematic illustration of the experimental setup. The inset shows β-carotene molecules encapsulated in carbon nanotubes.

Figure 2. (bottom)(a) Atomic force microscopy image of β−carotene−encapsulated carbon nanotubes. The scale bars indicate 50nm. (b) Near−field spectra of the sample measured at positions a–g, respectively.
Figure 1.(top) Schematic illustration of the experimental setup. The inset shows β-carotene molecules encapsulated in carbon nanotubes.

Figure 2. (bottom)(a) Atomic force microscopy image of β−carotene−encapsulated carbon nanotubes. The scale bars indicate 50nm. (b) Near−field spectra of the sample measured at positions a–g, respectively.

Abstract:
Yuika Saito and Kazuhiro Yanagi

A new Raman spectroscopy technique reveals both the chemical composition and spatial resolution of nanomaterials.

Using a nano light source to investigate small-scale composite materials

WA | Posted on March 13th, 2008

We are currently witnessing a strong trend toward developing artificial materials with nanoscale structures. For example, single-walled carbon nanotubes (SWNTs) doped with organic molecules are useful for controlling electrical conductivity, optical switching, and nonlinear media.1-3 Because such materials consist of two or more different molecular components (hence the term ‘nanocomposites'), characterizing them requires a technique that combines chemical analysis with nanometer-scale spatial resolution.

A variety of methods exist for investigating and characterizing nanoscale structures, but few are suitable for molecular analysis. For instance, transmission electron microscopy enables visualization of objects inside SWNTs,4 but it cannot identify molecular species. One alternative is vibrational spectroscopy, including Raman spectroscopy. In addition to molecular identification, vibrational energy analysis provides detailed structural information for each species, such as intermolecular interactions, molecular orientation, and symmetry distortions.5 This makes Raman spectroscopy a powerful tool for studying the chemical composition of matter. By the same token, conventional confocal Raman spectroscopy techniques cannot attain spatial resolution on the nanoscale.

We have overcome this limitation through an approach we call tip-enhanced Raman spectroscopy (TERS). By introducing a sharp metal tip to the focus of a laser beam, we were able to localize Raman excitation to an area of 30nm2.6,7 The apex acts as a nanoscale light source, which couples with surface plasmon polaritons (charge density waves propagating along the metal surface) to increase both the incident light field and the Raman scattering signal. To demonstrate the technique we used samples of β−carotene encapsulated in SWNTs.8

Figure 1 shows a schematic experimental setup for TERS. The optical layout is a combination of Raman spectroscopy and scanning probe microscopy. TERS profiles were measured using a silver tip positioned close to the sample, and reference spectra were also obtained at the same position without the silver tip. The detailed experimental setup has been described elsewhere.8 Figure 2(a) shows atomic force microscopy images of the samples. Although the images appear to be of single tubes, they are actually bundles of several tens of tubes aligned parallel to each other, as shown by the 15nm average heights of the samples detected. We chose two different bundles that were completely separated. The crosses (a-g) indicate the position of the tip during the TERS, which was performed in 100nm steps along the bundles.

Figure 2(b) shows near−field Raman spectra of the difference between having the silver tip in contact with the sample and without the tip. Spectra a-g correspond to the sample positions in Figure 2(a). The interesting feature of Raman spectroscopy is that we can simultaneously obtain data from the SWNTs and β−carotene. Figure 2(b) illustrates the frequency region, including both ν1 (1523cm−1 conjugated C=C mode) from β-carotene and the G-band (1592cm-1 graphite mode) from carbon nanotubes. The most predominant feature among the spectra a-g is the absence of the encapsulated β−carotene in spectrum f. This means that the rate of encapsulation of β−carotene in the SWNTs was not uniform. The extremely low rate at position f could have occurred if the tubes were twisted during encapsulation or were filled with impurities. Another feature is that in spectrum c, the intensity of encapsulated β−carotene is higher compared with other spectra. Figure 2(a) shows the presence of another thin bundle entangled with a thicker one.

This example demonstrates that TERS is useful for avoiding the averaging of Raman spectra of nanocomposite materials that are not spatially uniform. The principle of this method is to use tip enhancement, which provides both spectral and topological information. This technique can be applied not only to surfaces but also to molecules enclosed inside nanostructures.
Yuika Saito
Frontier Research Center
Osaka University
Suita, Japan
http://lasie.ap.eng.osaka-u.ac.jp/home.html

Yuika Saito has carried out basic and applied research in near-field Raman spectroscopy at RIKEN (Institute of Physical and Chemical Research) and Osaka University since 2003.
Kazuhiro Yanagi
Nanotechnology Research Institute
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Japan

Kazuhiro Yanagi has carried out fundamental research on SWNTs and nanocomposite materials at AIST since 2005.
References:
1. T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, Y. Iwasa, Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes, Nat. Mater. 2, no. 10, pp. 683-688, 2003.doi:10.1038/nmat976
2. K. Yanagi, Y. Miyata, H. Kataura, Highly stabilized beta-carotene in carbon nanotubes, Adv. Mater. 18, no. 2, pp. 437-441, 2006.doi:10.1002/adma.200501839
3. K. Yanagi, K. Iakoubovskii, S. Kazaoui, N. Minami, Y. Maniwa, Y. Miyata, H. Kataura, Light-harvesting function of beta-carotene inside carbon nanotubes, Phys. Rev. B 74, no. 15, pp. 155420, 2006.doi:10.1103/PhysRevB.74.155420
4. Z. Liu, K. Yanagi, K. Suenaga, H. Kataura, S. Iijima, Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes, Nat. Nanotech. 2, no. 7, pp. 422-425, 2007.doi:10.1038/nnano.2007.187
5. D. A. Long, Raman Spectroscopy, McGraw-Hill, New York, 1977.
6. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Metallized tip amplification of near-field Raman scattering, Opt. Commun. 183, no. 1-4, pp. 333-336, 2000.doi:10.1016/S0030-4018(00)00894-4
7. R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem. Phys. Lett. 318, no. 1-3, pp. 131-136, 2000.doi:10.1016/S0009-2614(99)01451-7
8. Y. Saito, K. Yanagi, N. Hayazawa, K. Ishitobi, A. Ono, H. Kataura, S. Kawata, Tip-enhanced Raman spectroscopy of organic molecules encapsulated in carbon nanotubes, Jap. J. Appl. Phys. 45, no. 12, pp. 9286-9289, 2006.doi:10.1143/JJAP.45.9286

####

About SPIE
SPIE is an international membership society, serving scientists and engineers in industry, academia, and government, as well as companies producing leading-edge products. SPIE constituents work in a wide variety of fields that utilize some aspect of optics and photonics, which is the science and application of light. More specifically, optics is a branch of physics that examines the behavior and properties of light and the interaction of light with matter. Photonics is the science and technology of generating, controlling, and detecting photons, which are particles of light.

Individuals involved with SPIE conduct research and apply discoveries to the design and development of such technologies as semiconductor manufacturing, robotics, medical imaging, next-generation displays, battlefield technologies, entertainment, biometric security, image processing, communications, astronomy, and much more. SPIE attracts Members from around the world, including North and South America, Europe, Africa, and Asia, and supports them from offices in North America and Europe. Founded in 1955, SPIE continues to support those who seek to learn, discover and innovate by building a better world with light.

For more information, please click here

Contacts:
Yuika Saito
Frontier Research Center
Osaka University
Suita, Japan
http://lasie.ap.eng.osaka-u.ac.jp/home.html

Kazuhiro Yanagi
Nanotechnology Research Institute
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Japan

Copyright © SPIE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project