Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Size matters - new frontiers in measuring radiation

March 12th, 2008

Size matters - new frontiers in measuring radiation

Abstract:
As Richard Branson gears up to commercialise flights into space, a team of Australian scientists are pushing new frontiers that could not only make air and space travel safer but also help in the fight against cancer.

In a world first, Australian scientists have designed and developed a miniature radiation detector the size of a human cell nucleus. The revolutionary device called a micro-dosimeter can accurately measure how much energy is deposited by radiation in the cell nucleus which greatly assists in the understanding of the effect of the radiation on the cell.

The technology was developed in collaboration between the University of Wollongong, ANSTO and the University of New South Wales based on an original concept from Professor Anatoly Rozenfeld of the University of Wollongong.

"This is a significant breakthrough in our ability to successfully measure different kinds of radiation and accurately predict the cancer risk of radiation exposure," said Anatoly.

Anatoly explained that conventional detectors are not sophisticated enough to give accurate readings as they are only designed to measure radiation in large volumes and only for specific types of radiation, namely gamma and neutron.

To build a micro-dosimeter, the volume of a cell nucleus, unique nanofabrication techniques were employed at the Nanotechnology Fabrication Facility at the University of New South Wales.

Source:
sciencealert.com.au

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Discoveries

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Announcements

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE