Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanopores That Can Recognize, Separate Proteins and Small Molecules Developed at UMass Amherst

Abstract:
Nanopores, holes less than one-thousand the width of a human hair, are capable of isolating strands of DNA or therapeutic drugs from a solution, based mostly on the size of the pores. Now, a chemist at the University of Massachusetts Amherst has created nanopores that can recognize and interact with certain molecules, actively controlling their movement across synthetic membranes. Results were published online Feb. 3 in Nature Nanotechnology.

Nanopores That Can Recognize, Separate Proteins and Small Molecules Developed at UMass Amherst

AMHERST, MA | Posted on March 2nd, 2008

By lining their internal cavities with various polymers, S. "Thai" Thayumanavan and his students Elamprakash Savariar and K. Krishnamoorthy of the UMass Amherst department of chemistry have developed a method for creating nanopores that can separate small molecules and proteins based on size, charge and how strongly they are repelled by water. The method could be used in many applications including diagnostic medical tests, DNA sequencing and fuel-cell membranes.

"Modifying the internal cavities of nanopores with polymers allows them to interact with molecules moving through the pores. By using different polymers, we can control how the molecules will react with the nanopore and this allows us to identify them as they pass through," says Thayumanavan. "This process may be especially suitable for sensors, since the presence of a single molecule can produce changes in the electrical properties of the nanopore that we can detect and measure."

Thayumanavan views this process as a platform technology that could be used by researchers in many fields. "At UMass Amherst, we are researching the use of this method in sensors and separations, as well as addressing some fundamental questions about fuel-cell membranes as part of the Center for Fueling the Future funded by the National Science Foundation."

To create these functional nanopores, Thayumanavan immersed a membrane containing nanopores in a tin solution, causing tin ions with a positive charge to adhere to the inside of the pores. Filtering a negatively charged polymer solution through the membrane caused tin ions to attract molecules of the polymer like a magnet and hold them in place, where they can easily react with other molecules in the confined space of the nanopores.

This process has many advantages over current methods. "Using polymer molecules allows you to precisely control the size of the nanopores at the same time that you are altering them to perform specific functions," says Thayumanavan. "It can also be done quickly, usually in a few minutes. This method also results in a uniform layer inside the nanopore that behaves in a predictable way."

Testing performed by Thayumanavan showed that using different types of polymers could create nanopores of almost any size, which translates to efficient separation of molecules based on their size.

Nanopores lined with polymers were also able to separate molecules based on their charge. "We found that nanopores with negatively charged interiors would allow positively charged molecules to move through the membrane more quickly," says Thayumanavan. "Conversely, nanopores decorated with positively charged interiors would favor negatively charged molecules."

In additional experiments, Thayumanavan lined the nanopores with polymers that were hydrophobic, or strongly repelled by water, and found that they would allow other hydrophobic molecules to pass more easily through the membrane. A final test revealed that the membranes could be used to separate proteins based on electrical charge.

Future research will focus on using different polymers with different functional groups to find out how specific the process can be made. "This method is limited only by the ability of chemists to place chemically reactive functional groups in polymer chains," says Thayumanavan.

####

About University of Massachusetts Amherst
From polymer science to plant biology, the University of Massachusetts Amherst is a world leader for vital research that advances knowledge, enhances opportunities and produces technological innovations that invigorate the economy and benefit society.

For more information, please click here

Contacts:
Sankaran Thayumanavan
413/545-1313

Copyright © University of Massachusetts Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Sensors

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Fuel Cells

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project