Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanopores That Can Recognize, Separate Proteins and Small Molecules Developed at UMass Amherst

Abstract:
Nanopores, holes less than one-thousand the width of a human hair, are capable of isolating strands of DNA or therapeutic drugs from a solution, based mostly on the size of the pores. Now, a chemist at the University of Massachusetts Amherst has created nanopores that can recognize and interact with certain molecules, actively controlling their movement across synthetic membranes. Results were published online Feb. 3 in Nature Nanotechnology.

Nanopores That Can Recognize, Separate Proteins and Small Molecules Developed at UMass Amherst

AMHERST, MA | Posted on March 2nd, 2008

By lining their internal cavities with various polymers, S. "Thai" Thayumanavan and his students Elamprakash Savariar and K. Krishnamoorthy of the UMass Amherst department of chemistry have developed a method for creating nanopores that can separate small molecules and proteins based on size, charge and how strongly they are repelled by water. The method could be used in many applications including diagnostic medical tests, DNA sequencing and fuel-cell membranes.

"Modifying the internal cavities of nanopores with polymers allows them to interact with molecules moving through the pores. By using different polymers, we can control how the molecules will react with the nanopore and this allows us to identify them as they pass through," says Thayumanavan. "This process may be especially suitable for sensors, since the presence of a single molecule can produce changes in the electrical properties of the nanopore that we can detect and measure."

Thayumanavan views this process as a platform technology that could be used by researchers in many fields. "At UMass Amherst, we are researching the use of this method in sensors and separations, as well as addressing some fundamental questions about fuel-cell membranes as part of the Center for Fueling the Future funded by the National Science Foundation."

To create these functional nanopores, Thayumanavan immersed a membrane containing nanopores in a tin solution, causing tin ions with a positive charge to adhere to the inside of the pores. Filtering a negatively charged polymer solution through the membrane caused tin ions to attract molecules of the polymer like a magnet and hold them in place, where they can easily react with other molecules in the confined space of the nanopores.

This process has many advantages over current methods. "Using polymer molecules allows you to precisely control the size of the nanopores at the same time that you are altering them to perform specific functions," says Thayumanavan. "It can also be done quickly, usually in a few minutes. This method also results in a uniform layer inside the nanopore that behaves in a predictable way."

Testing performed by Thayumanavan showed that using different types of polymers could create nanopores of almost any size, which translates to efficient separation of molecules based on their size.

Nanopores lined with polymers were also able to separate molecules based on their charge. "We found that nanopores with negatively charged interiors would allow positively charged molecules to move through the membrane more quickly," says Thayumanavan. "Conversely, nanopores decorated with positively charged interiors would favor negatively charged molecules."

In additional experiments, Thayumanavan lined the nanopores with polymers that were hydrophobic, or strongly repelled by water, and found that they would allow other hydrophobic molecules to pass more easily through the membrane. A final test revealed that the membranes could be used to separate proteins based on electrical charge.

Future research will focus on using different polymers with different functional groups to find out how specific the process can be made. "This method is limited only by the ability of chemists to place chemically reactive functional groups in polymer chains," says Thayumanavan.

####

About University of Massachusetts Amherst
From polymer science to plant biology, the University of Massachusetts Amherst is a world leader for vital research that advances knowledge, enhances opportunities and produces technological innovations that invigorate the economy and benefit society.

For more information, please click here

Contacts:
Sankaran Thayumanavan
413/545-1313

Copyright © University of Massachusetts Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Sensors

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Energy

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Fuel Cells

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Researchers Pump Up Oil Accumulation in Plant Leaves: Method could greatly boost energy content of crops grown for fuel October 8th, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE