Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanopores That Can Recognize, Separate Proteins and Small Molecules Developed at UMass Amherst

Abstract:
Nanopores, holes less than one-thousand the width of a human hair, are capable of isolating strands of DNA or therapeutic drugs from a solution, based mostly on the size of the pores. Now, a chemist at the University of Massachusetts Amherst has created nanopores that can recognize and interact with certain molecules, actively controlling their movement across synthetic membranes. Results were published online Feb. 3 in Nature Nanotechnology.

Nanopores That Can Recognize, Separate Proteins and Small Molecules Developed at UMass Amherst

AMHERST, MA | Posted on March 2nd, 2008

By lining their internal cavities with various polymers, S. "Thai" Thayumanavan and his students Elamprakash Savariar and K. Krishnamoorthy of the UMass Amherst department of chemistry have developed a method for creating nanopores that can separate small molecules and proteins based on size, charge and how strongly they are repelled by water. The method could be used in many applications including diagnostic medical tests, DNA sequencing and fuel-cell membranes.

"Modifying the internal cavities of nanopores with polymers allows them to interact with molecules moving through the pores. By using different polymers, we can control how the molecules will react with the nanopore and this allows us to identify them as they pass through," says Thayumanavan. "This process may be especially suitable for sensors, since the presence of a single molecule can produce changes in the electrical properties of the nanopore that we can detect and measure."

Thayumanavan views this process as a platform technology that could be used by researchers in many fields. "At UMass Amherst, we are researching the use of this method in sensors and separations, as well as addressing some fundamental questions about fuel-cell membranes as part of the Center for Fueling the Future funded by the National Science Foundation."

To create these functional nanopores, Thayumanavan immersed a membrane containing nanopores in a tin solution, causing tin ions with a positive charge to adhere to the inside of the pores. Filtering a negatively charged polymer solution through the membrane caused tin ions to attract molecules of the polymer like a magnet and hold them in place, where they can easily react with other molecules in the confined space of the nanopores.

This process has many advantages over current methods. "Using polymer molecules allows you to precisely control the size of the nanopores at the same time that you are altering them to perform specific functions," says Thayumanavan. "It can also be done quickly, usually in a few minutes. This method also results in a uniform layer inside the nanopore that behaves in a predictable way."

Testing performed by Thayumanavan showed that using different types of polymers could create nanopores of almost any size, which translates to efficient separation of molecules based on their size.

Nanopores lined with polymers were also able to separate molecules based on their charge. "We found that nanopores with negatively charged interiors would allow positively charged molecules to move through the membrane more quickly," says Thayumanavan. "Conversely, nanopores decorated with positively charged interiors would favor negatively charged molecules."

In additional experiments, Thayumanavan lined the nanopores with polymers that were hydrophobic, or strongly repelled by water, and found that they would allow other hydrophobic molecules to pass more easily through the membrane. A final test revealed that the membranes could be used to separate proteins based on electrical charge.

Future research will focus on using different polymers with different functional groups to find out how specific the process can be made. "This method is limited only by the ability of chemists to place chemically reactive functional groups in polymer chains," says Thayumanavan.

####

About University of Massachusetts Amherst
From polymer science to plant biology, the University of Massachusetts Amherst is a world leader for vital research that advances knowledge, enhances opportunities and produces technological innovations that invigorate the economy and benefit society.

For more information, please click here

Contacts:
Sankaran Thayumanavan
413/545-1313

Copyright © University of Massachusetts Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Sensors

The stacked color sensor: True colors meet minimization November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Nanobiotechnology

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Age-old malaria treatment found to improve nanoparticle delivery to tumors: Nanomedicine researchers find new use for 70-year-old drug November 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project