Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > The prospect of diamond transistors moves closer as LCN and DMD sign contract

Electronic grade diamond which forms the basis of the transistor research work. Courtesy of DMD Inc.
Electronic grade diamond which forms the basis of the transistor research work. Courtesy of DMD Inc.

Abstract:
Diamond Microwave Devices Ltd, DMD has placed a contract with the London Centre for Nanotechnology (LCN) for studies related to diamond's electronic properties.

The prospect of diamond transistors moves closer as LCN and DMD sign contract

London, UK | Posted on February 11th, 2008

DMD, a subsidiary of Element Six which is the world leader in the production of all forms of synthetic diamond for industrial use, is actively working on a new generation of electronic components based on diamond rather than silicon. This work moves the prospect of active switching needed for RF components closer to reality. "The work will be to investigate the mobility of delta-doped chemical vapour deposition (CVD) diamond and to apply the results within a 2D physical model for a diamond transistor," explains Richard Lang, general manager of DMD Ltd.Image of electronic grade diamond which forms the basis of the transistor research work

Delta doping is a technique that has been proposed to enable active electronic devices such as MESFETs (MEtal Semiconductor Field Effect Transistors) to be fabricated in diamond. In this technique, a thin layer of highly boron-doped diamond buried within the intrinsic diamond donates carriers (holes) to create a conduction channel between the metal source and drain. Such a design approach is needed because only p-type dopants are currently feasible for diamond and so efforts have been focused on novel structures that can create the active switching needed for transistor function taking into account this factor.

DMD's contract with the London Centre for Nanotechnology is to investigate mobility of delta-doped material. Mobility gives a measure of the efficiency of a transistor's function and the study will give an indication of diamond's possible performance as an active device. The London Centre for Nanotechnology is a multi-disciplinary organisation at the cutting edge of science and technology that is involved with research at the nanoscale.

Dr Richard Jackman, who will lead the research at the LCN, says, "Diamond offers enormous potential for high performance devices, but brings with it some challenges that are new to the electronics sector. The experience within DMD, when allied to the broad range of capabilities of the London Centre for Nanotechnology, makes this exciting collaboration unique in the world.

DMD was set up in late 2006 with the aim of creating the next generation of high power, high temperature semiconductor devices based on single crystal CVD diamond for use primarily in microwave power amplifiers and transmitters that are used in a broad range of applications spanning electronic defence and communications.

For more information on DMD Inc. please visit www.diamondmicrowavedevices.com

####

About London Centre for Nanotechnology
The London Centre for Nanotechnology, LCN, is a UK based multidisciplinary enterprise operating at the forefront of science and technology. It is a joint venture between University College London and Imperial College London and is based at the Bloomsbury and South Kensington sites. It has a unique operating model that accesses and focusses the combined skills of the departments of chemistry, physics, materials, medicine, electrical and electronic engineering, mechanical engineering, chemical engineering, biochemical engineering and earth sciences across the two universities.

For more information, please click here

Contacts:
London Centre for Nanotechnology
17-19 Gordon Street
London WC1H 0AH
tel: +44 (0)20 7679 0604
fax: +44 (0)20 7679 0595
email:

Copyright © London Centre for Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Chip Technology

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEPô drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic