Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Texas A&M Engineering researchers produce nanowires easier, faster than before

A section of nanowire produced by Texas A&M mechanical engineering researchers postdoctoral researcher Subrata Kundu and associate professor Hong Liang. The electrically conducting nanowire is about 1/1,000 the width of a human hair and could be used in developing nanoscale electronic devices.
A section of nanowire produced by Texas A&M mechanical engineering researchers postdoctoral researcher Subrata Kundu and associate professor Hong Liang. The electrically conducting nanowire is about 1/1,000 the width of a human hair and could be used in developing nanoscale electronic devices.

Abstract:
Sometimes simpler is better.

Texas A&M Engineering researchers produce nanowires easier, faster than before

COLLEGE STATION, TX | Posted on February 8th, 2008

Engineering researchers at Texas A&M University have developed a new way to produce ultra-thin electricity-conducting wire that is simpler and faster than existing processes.

"Other methods used to produce nanowires use high temperatures and high pressure," said Subrata Kundu, a post-doctoral researcher in the research group of Hong Liang, an associate professor in Texas A&M's Department of Mechanical Engineering. "This method is much simpler and faster."

Kundu and Liang described the process in an article in the current issue of the journal Advanced Materials.

The process developed by Kundu and Liang works by shining ultraviolet light on a mixture of strands of DNA, cadmium sulfate and thioacetamide for about six hours. UV light breaks thioacetamide to produce sulfide ions (S2-). Chemical changes produced by the UV light allow the cadmium sulfate molecules to bind to the DNA. The resulting nanowires — about 1,000 times thinner than a human hair — conduct electricity and could be used in the development of so-called nano-scale electronic devices like small chips to make tiny computer or medical devices.

Nano-scale devices range in size from the size of a molecule to about 100 nanometers. One meter is 1 billion nanometers long.

Liang and Kundu plan to continue research in this area using different metals — lead, zinc and molybdenum — to produce the nanowires. Kundu said working with the other metals will give the researchers important information about how the process works.

The UV process also allows nanowires to be built on DNA arranged in two or three dimensions, t-joints and cubes, for example. This opens the possibility of using the process to build entire nano-scale circuits.

####

About Texas A&M University
Texas A&M Engineering ranks among the finest and most comprehensive engineering programs in the nation.

Our Dwight Look College of Engineering is an integral part of Texas A&M University, which opened in 1876 as the state’s first public institution of higher education. Nearly 9,000 engineering majors are enrolled in our 12 departments. Our faculty are dedicated to teaching, research and discovery in all of the major engineering fields.

Texas A&M Engineering also includes three state engineering agencies that provide engineering research, education, and outreach.

You'll find Texas A&M University's 5,200-acre campus in the twin cities of Bryan-College Station, which share a population of more than 112,000. The community is located within a triangle formed by Dallas, Houston and San Antonio — three of the largest cities in the United States — and not far from the scenic Texas Gulf Coast and the state capital, Austin.

For more information, please click here

Contacts:
Gene Charleton

(979) 845-6715

Copyright © Texas A&M University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Chip Technology

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Discoveries

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Nanobiotechnology

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project