Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NRL scientists produce carbon nanotubes using commercially available polymeric resins

Images of (A,B) shaped CNT solids monoliths, (C) shards, and (D) powders derived from said monoliths.

Credit: Naval Research Laboratory
Images of (A,B) shaped CNT solids monoliths, (C) shards, and (D) powders derived from said monoliths.

Credit: Naval Research Laboratory

Abstract:
Scientists at the Naval Research Laboratory (NRL) have successfully produced carbon nanotubes (CNTs) in high yields in bulk solid compositions using commercially available aromatic containing resins. The concentration of multi-walled carbon nanotubes (MWNTs) and metal nanoparticles can be easily varied within the shaped carbonaceous solid. Carbon nanotube containing fibers and films have also been formulated from the precursor compositions. The potential range of applications is huge, including structure, energy, sensors, separation/filtration, battery, electronic displays, and nanoelectronic devices.

NRL scientists produce carbon nanotubes using commercially available polymeric resins

Washington, DC | Posted on February 7th, 2008

Using this method, carbon nanotubes (CNTs) are formed in a bulk carbonaceous solid from thermal decomposition of melt-processable precursor compositions formulated from organometallic compounds or metal salts in the presence of an excess amount of selected highly aromatic compounds. The CNTs obtained by this patented method are not formed from gaseous components, as is common with the current CNT production based on chemical vapor deposition (CVD) methods, but rather evolve from metal and carbon nanoparticles that form within the carbonaceous solid during the carbonization process above 500C. Only a small amount of the organometallic compound or metal salt is needed to achieve the formation of CNTs in high yield, but large quantities of the metal source can be used, depending on the application, if desired.

The solid-state method enables the large-scale production of MWNTs in moldable solid forms, films, and fibers using low-cost precursors and equipment, thereby reducing economic barriers that are inherent with carbon nanotube materials produced by more conventional methods, such as CVD. Following carbonization, the shaped carbon solids are composed of varying amounts of nanotubes and amorphous carbon, depending on such synthetic parameters as the metal catalyst concentration, carbonization temperature, and the specific organic precursors used. The amorphous carbon phase is readily removed via selective combustion at temperatures from 300-500 C, producing highly porous, purified CNT solids with specific surface areas up to 500 m2 g-1. This highly flexible synthetic method also offers the ability to incorporate heteroatoms, for example nitrogen, oxygen, and/or boron, into the carbon nanotube solid via the initial carbon precursors.

The NRL scientists use standard resin melt processing techniques to produce various shaped CNT-containing carbonaceous configurations. Their research is the first example of using high temperature thermosetting resins as a carbon source for the formation of CNTs. Any commercially available resins, including phthalonitriles resins, polyimides, epoxy resins, phenolics, and petroleum pitches, that have good thermal properties and show superior structural integrity, are attractive sources of carbon for CNT formation by the novel method.

The use of commercially available resins is a potentially inexpensive route to CNTs. Using this simple, potentially cost-effective method could result in the production of CNTs in large quantities and various shapes. Scientists are evaluating them for possible use in numerous aerospace, marine, and electronic applications.

The NRL research team consists of Drs. Teddy Keller, Matthew Laskoski, and Jeff Long from the Chemistry Division and Dr. Syed Qadri from the Materials Science and Technology Division. The research is funded by NRL base funds provided by the Office of Naval Research.

####

About Naval Research Laboratory
NRL operates as the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development directed toward maritime applications of new and improved materials, techniques, equipment, systems and ocean, atmospheric, and space sciences and related technologies. In fulfillment of this mission, NRL:

* Initiates and conducts broad scientific research of a basic and long-range nature in scientific areas of interest to the Navy.

* Conducts exploratory and advanced technological development deriving from or appropriate to the scientific program areas.

* Within areas of technological expertise, develops prototype systems applicable to specific projects.

* Assumes responsibility as the Navys principal R&D activity in areas of unique professional competence upon designation from appropriate Navy or DOD authority.

* Performs scientific research and development for other Navy activities and, where specifically qualified, for other agencies of the Department of Defense and, in defense-related efforts, for other Government agencies.

* Serves as the lead Navy activity for space technology and space systems development and support.

* Serves as the lead Navy activity for mapping, charting, and geodesy (MC&G) research and development for the National Geospatial-Intelligence Agency (NGA).

For more information, please click here

Contacts:
Donna McKinney

202-767-2541

Copyright © Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Laboratories

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Discoveries

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project