Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > DNA cages change size on demand

February 4th, 2008

DNA cages change size on demand

Abstract:
UK and German scientists have designed dynamic DNA cages which expand or contract on demand - and could be used to deliver drugs, or be the moving parts of nanomachines.

Researchers working with DNA have coaxed the strands into various impressive structures over the last two decades - including cubes, prisms, tetrahedra, and other exotic polyhedra. But these have usually been rigid and static: each edge consisting of a short double-stranded DNA segment.

But now, researchers based at the Universities of Oxford and Bielefield have built tetrahedra with one unusual edge that includes a single-stranded segment of DNA in its middle section[1]. This segment normally bunches up into a hairpin structure, but it straightens out - thus lengthening the entire edge - when it binds to a complementary single-stranded DNA segment.

By 'fuelling' the tetrahedra with the requisite complementary DNA segment, the researchers were able to expand the cage. Conversely, when they added 'anti-fuel' strands, they stuck to 'fuelling' DNA, pulling it away from the edge of the cage and making it contract again. The team also made a tetrahedron with two variable-length edges, which could independently expand or contract - dramatically changing the shape of the cage.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Letiís New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instrumentsí 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Discoveries

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Letiís New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Nanobiotechnology

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project