Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > DNA cages change size on demand

February 4th, 2008

DNA cages change size on demand

Abstract:
UK and German scientists have designed dynamic DNA cages which expand or contract on demand - and could be used to deliver drugs, or be the moving parts of nanomachines.

Researchers working with DNA have coaxed the strands into various impressive structures over the last two decades - including cubes, prisms, tetrahedra, and other exotic polyhedra. But these have usually been rigid and static: each edge consisting of a short double-stranded DNA segment.

But now, researchers based at the Universities of Oxford and Bielefield have built tetrahedra with one unusual edge that includes a single-stranded segment of DNA in its middle section[1]. This segment normally bunches up into a hairpin structure, but it straightens out - thus lengthening the entire edge - when it binds to a complementary single-stranded DNA segment.

By 'fuelling' the tetrahedra with the requisite complementary DNA segment, the researchers were able to expand the cage. Conversely, when they added 'anti-fuel' strands, they stuck to 'fuelling' DNA, pulling it away from the edge of the cage and making it contract again. The team also made a tetrahedron with two variable-length edges, which could independently expand or contract - dramatically changing the shape of the cage.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Discoveries

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Nanobiotechnology

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE