Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'One-pot' process can make more-efficient materials for fuel cells and solar cells

Provided/Ulrich Wiesner
In the CASH (combined assembly by soft and hard chemistries) process, a polymer forms itself into ordered rows of cylinders surrounded by a metal oxide. Heating in the absence of oxygen turns the polymer into a hard carbon framework that holds its shape while the metal oxide is heated to a higher temperature to make it form uniform crystals. Finally, heating in air burns off the carbon to leave a porous material.
Provided/Ulrich Wiesner
In the CASH (combined assembly by soft and hard chemistries) process, a polymer forms itself into ordered rows of cylinders surrounded by a metal oxide. Heating in the absence of oxygen turns the polymer into a hard carbon framework that holds its shape while the metal oxide is heated to a higher temperature to make it form uniform crystals. Finally, heating in air burns off the carbon to leave a porous material.

Abstract:
Cornell researchers have developed a "one-pot" process to create porous films of crystalline metal oxides that could lead to more-efficient fuel cells and solar cells.

'One-pot' process can make more-efficient materials for fuel cells and solar cells

ITHACA, NY | Posted on January 28th, 2008

In a fuel cell, a material with nanoscale pores offers more surface area over which a fuel can interact with a catalyst. Similarly in solar cells, a porous material offers more surface area over which light can be absorbed, so more of it is converted to electricity.

Previously such porous materials have been made on hard templates of carbon or silica, or by using soft polymers that self-assemble into a foamy structure. Making a hard porous template and getting the metal oxides to distribute evenly through it is tedious. The polymer approach is easier and makes a good structure, but the metal oxides must be heated to high temperatures to fully crystallize, and this causes the polymer pores to collapse.

The Cornell researchers have combined what Ulrich Wiesner, Cornell professor of materials science and engineering, calls "the best of the two approaches," using a soft block copolymer called poly(isoprene-block-ethylene oxide) or PI-b-PEO that carbonizes when heated to high temperatures in an inert gas, providing a hard framework around which the metal oxide crystallizes. Subsequent heating in air burns away the carbon. Wiesner calls this "combined assembly by soft and hard chemistries," or CASH.

The research is described in an online paper in the journal Nature Materials by Wiesner, Francis DiSalvo, the J.A. Newman Professor of Chemistry and Chemical Biology, and colleagues.

The researchers created porous films of titanium oxide, used in solar cells, and niobium oxide, a potential fuel-cell catalyst support. Chemicals that will react to form the metal oxides and a solution of PI-b-PEO are combined. As the reaction proceeds, the PI portion of the copolymer forms cylinders some 20 nanometers across surrounded by metal oxides, and subsequent heat treatments leave uniform, highly crystalline metal oxide with cylindrical pores. The pores are neatly ordered in hexagonal patterns, which creates a larger surface area than if the pores were randomly distributed. "When the pores are ordered, you can get more of them into the same space," Wiesner explains.

The resulting materials were examined by electron microscopy, X-ray diffraction and a variety of other techniques, all of which confirmed a highly crystalline structure and a uniform porosity, the researchers reported.

The next step, Wiesner said, is to apply the CASH process to the creation of porous metals.

Co-authors of the Nature Materials paper are postdoctoral researcher Jinwoo Lee and graduate research assistants M. Christopher Orilall, Scott Warren and Marleen Kampeman.

####

About Cornell University
The strategic plan for research at Cornell can be summed up simply: Be the best at what we undertake to do. The research enterprise supports university research priorities: the New Life Sciences; cross-college collaborations; and enabling research areas--computing and information sciences, genomics, advanced materials, and nanoscience. We build on our strengths when creating programs, recruiting faculty, purchasing equipment, and supporting interdisciplinary programs. Cornell research is committed to knowledge transfer and engages in technology transfer and economic development activities that benefit local, regional, national, and international constituents.

For more information, please click here

Contacts:
Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206


Bill Steele

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Discoveries

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Fuel Cells

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Solar/Photovoltaic

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project