Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Lasing on the spot

Figure 1: The artificial atom laser. (a) The design of the laser based on a superconducting ‘island’ made from a small dot of aluminum. The break up of the superconducting electron pairs (blue dots) releases energy into the resonator where laser light is generated. (b) Two spots of laser radiation generated by the device.
Figure 1: The artificial atom laser. (a) The design of the laser based on a superconducting ‘island’ made from a small dot of aluminum. The break up of the superconducting electron pairs (blue dots) releases energy into the resonator where laser light is generated. (b) Two spots of laser radiation generated by the device.

Abstract:
Lasing from 'artificial atoms' is demonstrated for the first time

Lasing on the spot

Japan | Posted on January 25th, 2008

Researchers from RIKEN's Frontier Research System in Wako, in collaboration with the NEC Nano Electronics Research Laboratory in Tsukuba, have realized the first laser made from ‘artificial atoms' based on a superconducting electronic device.

Since their invention almost half a century ago, lasers have always been based on the interaction of atoms with light. Typically, a number of atoms, either a gas or a crystal, are placed between two mirrors that form a cavity. The interaction between the atoms and the light in the cavity then leads to the creation of laser radiation. As the coupling between the atoms and the light in the cavity is generally very weak, many atoms are required to make a laser and lasing only occurs beyond a certain threshold of energy that needs to be pumped into the system.

Reporting in the journal Nature1, the researchers have now demonstrated a laser that is based on a single artificial atom and has no lasing threshold. In contrast to conventional lasers, "the strong coupling between the artificial atoms and the cavity enables a new lasing regime where one atom produces many light particles," notes Oleg Astafiev from the research team.

At the heart of this new laser is the artificial atom that is made from a small superconducting aluminum ‘island' (Fig. 1). This island is coupled to a reservoir, which is used to tune its properties and thus optimize the laser. When a small electrical voltage is applied to the island, the pairs of electrons that form the superconducting state are forced to break up and leave the island through the drain.

The energy that is released by breaking up these pairs is converted into light and fed into the resonator cavity. Contrary to conventional lasers, the coupling between the island and the resonator is very strong, so lasing is achieved immediately and without any threshold. This process of light generation can be repeated many times such that a single atom creates many photons for the laser.

The artificial-atom laser offers a number of opportunities. In particular, "this laser may be used to study the fundamental physical properties of this simplest of possible laser systems, consisting of only one atom," comments Astafiev. Furthermore, the small amount of power required to achieve lasing in this system could lead to the development of arrays of these small and compact lasers on a single computer chip.
Reference

1. Astafiev, O., Inomata, K., Niskanen, A. O., Yamamoto, T., Pashkin, Yu. A., Nakamura, Y. & Tsai, J. S. Single artificial-atom lasing. Nature 449, 588-590 (2007).

####

About Lasing on the spot
RIKEN is one of Japan’s largest research organisations with institutes and centres in various locations in Japan (see www.riken.jp/engn/r-world/link/index.html). RIKEN’s 3000+ researchers publish several hundred research articles in top scientific and technical journals every year across a broad spectrum of disciplines in physics, chemistry, biology, medicine, earth science and in many areas of technology, and the number of articles is growing year on year.

For more information, please click here

Contacts:
2-1 Hirosawa, Wako, Saitama 351-0198
TEL : +81-(0)48-462-1111(Switchboard Number)
FAX : +81-(0)48-462-4713

Copyright © RIKEN

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Discoveries

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Photonics/Optics/Lasers

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

We’ll Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic