Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Lasing on the spot

Figure 1: The artificial atom laser. (a) The design of the laser based on a superconducting ‘island’ made from a small dot of aluminum. The break up of the superconducting electron pairs (blue dots) releases energy into the resonator where laser light is generated. (b) Two spots of laser radiation generated by the device.
Figure 1: The artificial atom laser. (a) The design of the laser based on a superconducting ‘island’ made from a small dot of aluminum. The break up of the superconducting electron pairs (blue dots) releases energy into the resonator where laser light is generated. (b) Two spots of laser radiation generated by the device.

Abstract:
Lasing from 'artificial atoms' is demonstrated for the first time

Lasing on the spot

Japan | Posted on January 25th, 2008

Researchers from RIKEN's Frontier Research System in Wako, in collaboration with the NEC Nano Electronics Research Laboratory in Tsukuba, have realized the first laser made from ‘artificial atoms' based on a superconducting electronic device.

Since their invention almost half a century ago, lasers have always been based on the interaction of atoms with light. Typically, a number of atoms, either a gas or a crystal, are placed between two mirrors that form a cavity. The interaction between the atoms and the light in the cavity then leads to the creation of laser radiation. As the coupling between the atoms and the light in the cavity is generally very weak, many atoms are required to make a laser and lasing only occurs beyond a certain threshold of energy that needs to be pumped into the system.

Reporting in the journal Nature1, the researchers have now demonstrated a laser that is based on a single artificial atom and has no lasing threshold. In contrast to conventional lasers, "the strong coupling between the artificial atoms and the cavity enables a new lasing regime where one atom produces many light particles," notes Oleg Astafiev from the research team.

At the heart of this new laser is the artificial atom that is made from a small superconducting aluminum ‘island' (Fig. 1). This island is coupled to a reservoir, which is used to tune its properties and thus optimize the laser. When a small electrical voltage is applied to the island, the pairs of electrons that form the superconducting state are forced to break up and leave the island through the drain.

The energy that is released by breaking up these pairs is converted into light and fed into the resonator cavity. Contrary to conventional lasers, the coupling between the island and the resonator is very strong, so lasing is achieved immediately and without any threshold. This process of light generation can be repeated many times such that a single atom creates many photons for the laser.

The artificial-atom laser offers a number of opportunities. In particular, "this laser may be used to study the fundamental physical properties of this simplest of possible laser systems, consisting of only one atom," comments Astafiev. Furthermore, the small amount of power required to achieve lasing in this system could lead to the development of arrays of these small and compact lasers on a single computer chip.
Reference

1. Astafiev, O., Inomata, K., Niskanen, A. O., Yamamoto, T., Pashkin, Yu. A., Nakamura, Y. & Tsai, J. S. Single artificial-atom lasing. Nature 449, 588-590 (2007).

####

About Lasing on the spot
RIKEN is one of Japan’s largest research organisations with institutes and centres in various locations in Japan (see www.riken.jp/engn/r-world/link/index.html). RIKEN’s 3000+ researchers publish several hundred research articles in top scientific and technical journals every year across a broad spectrum of disciplines in physics, chemistry, biology, medicine, earth science and in many areas of technology, and the number of articles is growing year on year.

For more information, please click here

Contacts:
2-1 Hirosawa, Wako, Saitama 351-0198
TEL : +81-(0)48-462-1111(Switchboard Number)
FAX : +81-(0)48-462-4713

Copyright © RIKEN

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Chip Technology

Error-free into the quantum computer age December 15th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Photonics/Optics/Lasers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project