Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Programming Biomolecular Self-Assembly Pathways

Abstract:
Nature knows how to make proteins and nucleic acids (DNA and RNA) dance to assemble and sustain life. Inspired by this proof of principle, researchers at the California Institute of Technology have demonstrated that it is possible to program the pathways by which DNA strands self-assemble and disassemble, and hence to control the dynamic function of the molecules as they traverse these pathways.

Programming Biomolecular Self-Assembly Pathways

PASADENA, CA | Posted on January 17th, 2008

The team invented a versatile DNA motif with three modular domains that can be made to interact with complementary domains in other species of the same motif. Rewiring these relationships changes the dynamic function of the system. To make it easier to design such systems, the researchers developed a graphical abstraction of the motif that can be used to write "molecular programs." As described in the January 17 issue of the journal Nature, the team experimentally demonstrated the execution of four such programs, each illustrating a different class of dynamic function.

The study was performed by a team of four at Caltech: Niles Pierce, associate professor of applied and computational mathematics and bioengineering; Peng Yin, senior postdoctoral scholar in bioengineering and computer science; Harry Choi, graduate student in bioengineering; and Colby Calvert, research technician.

Programming pathways is a bit like planning a road trip. The final destination might be important, but the true enjoyment is picking and traveling the route. In the test tube, the goal is not solely to direct the molecules to assemble into a target structure, but to engage them in a sequence of maneuvers so as to implement a prescribed dynamic function before the system reaches equilibrium. The energy to power the reactions is stored in the molecules themselves. Each molecule is initially trapped in a high-energy state so that it can release this energy as it engages in handshakes with other molecules.

A molecular program is written and executed in four steps. First, the intended assembly and disassembly pathways are described using a graphical abstraction called a "reaction graph." This molecular program is then translated into molecular mechanisms described at the level of base pairing between individual complementary bases. Computational design algorithms developed in the group are then used to encode this mechanism into the DNA sequences. Finally, the program is executed by mixing the physical molecules.

To demonstrate this approach, the team experimentally demonstrated a variety of dynamic functions: catalytic formation of branched junctions, cross-catalytic circuitry with exponential system kinetics, triggered dendritic growth of molecular "trees," and autonomous locomotion of a molecular bipedal walker.

As Pierce describes it, these results take them closer to achieving a long-term goal of creating a "compiler for biomolecular function"--an automated design tool that takes as input a molecular program and provides as output a set of biomolecules that execute the desired function. He remarks, "It's about time for the stone age of molecular compilers to begin."

####

About Caltech
The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.

For more information, please click here

Contacts:
Elisabeth Nadin
(626) 395-3631

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Self Assembly

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Cypress’s TrueTouch® Touchscreen Controllers Compatible with Cima NanoTech’s SANTE® Silver Nanoparticle-Based Touch Sensors: Supporting Designs for Advanced Touch Applications March 5th, 2014

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes March 1st, 2014

A potentially revolutionnary material: Scientists produce a novel form of artificial graphene February 15th, 2014

Discoveries

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Announcements

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Nanobiotechnology

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE