Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotech Researchers Discover Cancer Cells “Feel” Much Softer Than Normal Cells

Abstract:
A multidisciplinary team of scientists from the University of California, Los Angeles (UCLA), were able to differentiate metastatic cancer cells from normal cells in patient samples by utilizing a modified form of atomic force microscopy (AFM) to measure the softness of the cells. The study, published in the journal Nature Nanotechnology, represents a move toward applying novel technologies to better understanding the implications of altered cell architecture and its role in cancer progression.

Nanotech Researchers Discover Cancer Cells “Feel” Much Softer Than Normal Cells

Bethesda , MD | Posted on January 16th, 2008

The authors demonstrate that metastatic tumor cells may be more flexible than normal cells because of their ability to enter the bloodstream and maneuver through tight anatomical spaces. These spreading, invading cancer cells can cause a buildup of fluids in body cavities such as the chest and abdomen, but fluid buildup in patients does not always mean that cancer cells are present. If the fluid could be quickly and accurately tested for the presence of cancer, oncologists could make better decisions about how aggressive treatment should be whether any treatment is necessary. Conventional diagnostic methods detect only about 70 percent of cases where cancer cells are present in the fluid.

In this study, researchers collected fluid from the chest cavities of patients with lung, breast, and pancreatic cancers, a relatively noninvasive procedure. The UCLA investigators, led by James Gimzewski, Ph.D., used an AFM to probe differences in cell softness between metastatic and normal cells. The AFM uses a minute, sharp tip on a spring to push against the cell surface and determine the degree of softness, in much the way that a doctor's hands might palpate the body during a physical examination.

"You look at two tomatoes in the supermarket and both are red. One is rotten, but it looks normal," Gimzewski said. "If you pick up the tomatoes and feel them, it's easy to figure out which one is rotten. We're doing the same thing. We're poking and quantitatively measuring the softness of the cells."

After probing a cell, AFM assigns a value that represents how soft a cell is based on the resistance encountered. The team found that cancer cells were much softer than normal cells and that they were similarly soft, with very little variation in gradation. The normal, healthy cells from the same specimen were much stiffer than the cancer cells, and in fact, the softness values assigned to each group did not overlap at all, making diagnosis using this nanomechanical measurement easier and more accurate.

The UCLA team is now exploring whether nanomechanical analysis can be used to personalize cancer treatment based on the characteristics of a patient's cancer cells. The idea would be to test a panel of appropriate anticancer drugs to see which would increase the stiffness of the cells from a particular patient.

This work, which was supported in part by the NCI, is detailed in the paper "Nanomechanical analysis of cells from cancer patients." An abstract of this paper is available at the journal's Web site.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

News and information

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Nanomedicine

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Amino-functionalized carbon nanotubes act as a carrier for nerve growth factor April 21st, 2014

Newly-Produced Bone Cement Able to Carry Medicine April 21st, 2014

Discoveries

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Vacuum Ultraviolet Lamp of the Future Created in Japan: First Solid-State Vacuum UV Phosphor, Described in APL-Materials, Promises Smaller, Safer, Longer Lasting, Low Power Lamps for Industrial Applications April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Announcements

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE